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Anisotropy in granular media: Classical elasticity and directed-force chain network
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A general approach is presented for understanding the stress response function in anisotropic granular layers
in two dimensions. The formalism accommodates both classical anisotropic elasticity theory and linear theories
of anisotropic directed-force chain networks. Perhaps surprisingly, two-peak response functions can occur even
for classical, anisotropic elastic materials, such as triangular networks of springs with different stiffnesses. In
such cases, the peak widths grow linearly with the height of the layer, contrary to the diffusive spreading found
in ‘‘stress-only’’ hyperbolic models. In principle, directed-force chain networks can exhibit the two-peak,
diffusively spreading response function of hyperbolic models, but all models in a particular class studied here
are found to be in the elliptic regime.
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I. INTRODUCTION

The stress response of an assembly of hard, cohesio
grains has been a subject of debate@1–4#. The dividing line
has been mostly between traditional approaches base
elasticity or elastoplasticity theory on one hand, and ‘‘stre
only’’ models on the other which make no reference to
local deformation field but posit~history-dependent! closure
relations between components of the stress tensor.
former leads to elliptic partial differential equations for th
stresses, for which boundary conditions must be impo
everywhere on the boundary. In contrast, the latter appro
often leads to hyperbolic equations@3,4#. The wavelike be-
havior of their solutions has been at the origin of a propo
physical mechanism called stress propagation through
bulk granular material. In an infinite slab geometry, it on
requires the specification of boundary conditions on
‘‘top’’ surface. A family of ~linear! closure relations have
been shown to account for the pressure dip underneath
apex of a sandpile and stresses in silos@3,4#. Alternative
explanations based on elastoplasticity are found in Ref.@5#.

The phenomenological stress-only closure relations
low from plausible symmetry arguments, and can be see
the coarse-grained version of local probabilistic rules
stress transfer@6#. However, these relations lack a detail
microscopic derivation that would allow one to understa
both their range of validity and to compute the phenome
logical parameters from the statistical properties of the pa
ing, except in the case of frictionless grains. In fact, a sys
of frictionless polydisperse spheres is shown to be isost
@7–10#, i.e., the number of unknown forces is equal to t
number of equations for mechanical equilibrium. If an iso
tatic system is sufficiently anisotropic, a linear closure re
tion between stresses can be derived@11#. Further attempts to
obtain the missing equation for stresses from a microsco
approach for different packings are presented in@11,12#, but
these are still somewhat inconclusive. In particular, in
case of a completely isotropic packing, none of the homo
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neous linear closure relations is compatible with the ro
tional symmetry. The idea of ‘‘grains’’~in the metallurgical
sense! and packing defects must be introduced to restore
large scale symmetry.

In order to understand stress distribution on a more f
damental level, we have introduced the mesoscopic con
of the directed-force chain network~DFCN! @13,14#, which
is motivated by the experimental evidence for filamenta
force chains in a wide variety of systems@15#. The ‘‘double
Y’’ model has been developed to describe such netwo
based on simple rules for the splitting and merging
straight force chains. This model leads to a nonlinear Bo

mann equation for the probabilityP( f ,n̂,r ) of finding a force

chain at the spatial pointr with intensityf in the directionn̂.
In the first paper@13#, chain merging~which produces the

nonlinear terms in the Boltzmann equation! was neglected.
An isotropic splitting rule was assumed, corresponding
strongly disordered isotropic granular packings. A pse
doelastic theory for the stress tensor was derived in wh
the role of the displacement field is played by a vector fi
J(r )5^n̂f & that represents the coarse-grained or ensem
averaged force chain direction. A relation between] iJj and
the stress tensor exists that is formally equivalent to an
tropic stress-strain relation. The resulting elliptic equatio
yield a response function with a unique~pseudoelastic! peak,
as observed experimentally in strongly disordered packi
@16,17#. Further study showed, however, that the nonline
terms in the Boltzmann equation contain essential phy
and cannot be neglected@14#. In fact, for an exactly solvable
model with six discrete directions for force chains, it w
found that the elliptic~pseudoelastic! behavior of the re-
sponse function is limited to small depths, and that at su
ciently large depths a crossover occurs to a hyperbolic
sponse, i.e., two Gaussian peaks that propagate away
broaden diffusively. Whether this behavior is specific to t
model with six discrete directions is a subject of curre
study, and the elliptic or hyperbolic nature of the lineariz
©2003 The American Physical Society02-1
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response around the full solution of the nonlinear Boltzma
equation is an open question.

Following a different route, Goldenberg and Goldhirs
@18# have recently noted that a two-peak response func
can be found in classical anisotropic ball-and-spring mod
Gay and da Silveira@19# have furthermore given some arg
ments for the relevance of anisotropic elasticity for the la
scale description of granular assemblies of compress
grains that can locally rotate. The two-peak nature of
response function is therefore not in itself a signature of
perbolicity, but may occur in elliptic systems that are su
ciently anisotropic. The unambiguous signature of hyp
bolic response lies in the scaling of the peak widths w
depth, which is linear in generic elliptic systems but diffusi
~proportional to the square root of depth! in generic hyper-
bolic systems. In the linear pseudoelasticity theories d
cussed below, the diffusive spreading in hyperbolic syste
is not captured; the peaks appear asd functions that do not
spread at all. Deviations from elasticity on small scales a
their possible relation with granular media were also d
cussed in Ref.@20#.

The aim of this paper is to give a unified account of t
shape of the response function for anisotropic systems
scribed either by standard elasticity theory or the pseudoe
tic theory that emerges from an approximate linear treatm
of directed-force networks. Though there are open quest
concerning the self-consistency of the latter, there do app
to be some contexts in which the equations of the ps
doelasticity theory hold, and they may be especially relev
for systems of intermediate depth~large compared to the
disorder length scale but not much larger than the persiste
length of force chains!.

Very recently, the response functions of two-dimensio
~2D! granular layers subjected to shear have been determ
experimentally@27#. Under shear, an anisotropic texture a
pears and force chains are preferably oriented along an a
of 45°. Within the ~pseudo!elasticity framework presente
below, this provides motivation for studying materials ch
acterized by a selected global directionN.

The paper is organized as follows. In Sec. II, a gene
mathematical framework for calculating stress respo
functions in anisotropic materials. The main results of
paper are then summarized in a ‘‘phase diagram’’ indicat
where ‘‘one-peak’’ or ‘‘two-peak’’ response functions can a
pear in parameter space. In Sec. III, we compute the ana
form of the response function for the various phases
show a number of examples for the variety of shapes that
possible, including a brief comment on relation to expe
mental work. In Sec. IV, we show how the formalism appli
to the example of a triangular ball-and-spring network, in
cating how spring stiffnesses must be chosen to acces
possible regions of the general parameter space. In Sec.
linear anisotropic pseudoelastic theory is derived from
anisotropic linear directed-force chain network model an
is shown that this class of models always lies in the ellip
regime. A conclusion is given in Sec. VI. Algebraic details
several calculations are presented in the Appendixes.
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II. ANISOTROPIC ELASTICITY AND SUMMARY
OF OUR RESULTS

A. General equations for 2D systems
with arbitrary anisotropy

In the following, we present a general framework th
covers both classical linear anisotropic elasticity theory@21#
and a generally anisotropic ‘‘pseudoelasticity’’ theory, th
appears within a linearized treatment of directed-force ch
networks~see Sec. V!. The large scale equations that can
derived in these two approaches are formally identical,
though the ‘‘pseudostrain’’ has a geometric meaning differ
from the usual strain tensor. For simplicity, we will restri
the discussion to two-dimensional systems.

The most general linear relation between the stress te
s and a symmetric tensor formed from the gradients o
vector fieldu is

s i j 5l i jkl ukl , ~1!

where s i j denotes a component of the stress tensor,ui j
[ 1

2 (] jui1] iuj ), and summation over repeated indices is i
plied. In the classical linear theory of elasticity, the vectorui
is the displacement field describing the physical deformat
of a continuous medium. For usual elastic bodies, the a
symmetric combination] jui2] iuj corresponds to a local ro
tation of the material, which is not allowed here. For gran
lar materials, on the other hand, grains might locally rot
due to the presence of friction. This extension which su
gests a continuum description in terms of Cosserat elast
was recently discussed in Ref.@19#. The absence of interna
torques requires that the stress tensor is also symmetric.
coefficientsl i jkl are material constants and form the elas
modulus tensor. The indicesi , j ,k,l are equal tox,z, where
for later purposesx is to be considered as the horizont
coordinate andz a vertical coordinate pointing downward.

Symmetry of both the stress and the strain tensor imp
permutation symmetry within the first and second pair
indices forl i jkl , i.e.,

l i jkl 5l j ikl 5l i j lk 5l j i lk . ~2!

Materials whose behavior is modeled only in terms of Eq.~1!
without any reference to a free energy functional are cha
terized by an elastic modulus tensor that need not have
symmetries other than Eq.~2!. They are called ‘‘hypoelastic’’
when ui j corresponds to a real strain tensor@22#. In hyper-
elastic materials, on the other hand, the existence of q
dratic free energy functional,

F5
1

2
l i jkl ui j ukl , ~3!

gives an additional symmetry under exchange of the first
second pair of indices, i.e.,

l i jkl 5lkli j . ~4!
2-2
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In the ‘‘pseudoelasticity’’ theory, the vectorui will be a novel
geometric quantity~see below!, and the resulting tensorui j
will be called a pseudoelastic strain tensor. This tensor is
symmetric, as explained in Sec. V, but the above additio
symmetry is, in general,not present.

We wish to construct general solutions of the equilibriu
equations

] is i j 50. ~5!

In order to close the problem for the stress tensor, a sup
mentary condition is needed which is the condition of co
patibility,

]z
2uxx1]x

2uzz22]x]zuxz50, ~6!

resulting simply from the fact that the tensorui j is built with
the derivatives of a vectorui . This relation does not depen
on a specific interpretation of the tensor in terms of r
deformations.

The entries of the stress and strain tensors can be arra
in vector form, i.e., S5(sxx ,szz,sxz)

T and U
5(uxx ,uzz,uxz)

T, giving a matrix representation of the ela
tic modulus tensor,

S5LU, ~7!

where

L5S lxxxx lxxzz 2lxxxz

lzzxx lzzzz 2lzzxz

lxzxx lxzzz 2lxzxz

D . ~8!

The factors of 2 are due to the symmetry under exchang
the last two indices ofl i jkl and ukl . Now, we want to ex-
press the compatibility relation in terms of the stress ten
so we need to expressU in terms ofS, i.e.,

U5BS, ~9!

whereB5(Bi j )5L21. Then Eq.~6! for an anisotropic me-
dium is rewritten as follows:

B1 j]z
2S j1B2 j]x

2S j22B3 j]x]zS j50. ~10!

For an isotropic medium,B115B22, B215B12, B3i5Bi3
50, for i 51,2, thus the equation reduces toD(sxx1szz)
50.

In the following, we will look for solutions of the form
s i j }eiqx1 ivz. In this case, Eq.~10!, together with the condi-
tions of mechanical equilibrium~5!, can be rewritten in ma-
trix form,

A~q,v!S50. ~11!

A nontrivial solution occurs if det„A(q,v)…50, which leads
to a certaindispersion relationof the formv(q)5Xq, where
X obeys the following equation:
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B11
2

B2312B32

B11
X1

2B331B211B12

B11
X22

B1312B31

B11
X3

1X450. ~12!

Depending on whether the rootsX are real or complex, the
response function will be qualitatively different.

~a! Complex roots, corresponding to elliptic equations f
the stress, appear within the classical theory of anisotro
elasticity. The fact that the roots are complex follows fro
the positivity of the free energy@23#.

~b! Purely real roots can occur in the context of directe
force chain networks considered below. The existence o
least one purely real root of the dispersion relation classi
the problem at hand as hyperbolic@23#.

B. The case of uniaxial symmetry

Let us consider the case of uniaxial anisotropy and cho
x and z to be along the principal axes of anisotropy. Th
only l i jkl with even numbers of equal indices is nonze
Due to the symmetry~2! of l i jkl , this leaves one, in genera
with five different constants. The matrixL takes the form

L†5S a c 0

c8 b 0

0 0 d
D . ~13!

We denote it with a dagger to indicate that it corresponds
a material with a vertical uniaxial symmetry. An alternativ
parametrization ofL† , standard in elasticity theory, is

L†5
1

12nxnz
S Ex nzEx 0

nxEz Ez 0

0 0 ~12nxnz!G
D , ~14!

whereEx,z and G are the Young and shear moduli, respe
tively, andnx,z the Poisson ratios. Note that the present fo
includes a linear elasticity theory without a free energy fun
tional. The classical theory is recovered with the extra sy
metry c85c. In this case,Ex , Ez , nx , andnz are not inde-
pendent, satisfying the relationEz /Ex5nz /nx . Together
with G, we are thus left with four independent constants.

In classical elasticity theory for a uniaxial system, t
stress-strain relation is derivable from an energy density
the form

F5
1

2
@auxx

2 1buzz
2 12cuxxuzz12duxz

2 #. ~15!

The material described is stable under deformations if
only if F is positive definite for any strain, which requires

a.0, b.0, d.0, and ab2c2.0. ~16!

Or, equivalently,

nxnz,1, Ex.0, Ez.0, and G.0. ~17!
2-3
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An elastic material that is permitted to reversibly defo
must obey these constraints, but they do not apply to m
rials for which there is no well-defined free energy quadra
in the strains. We speak of such materials as being descr
by coefficients that lie outside the ‘‘classical stability’’ rang

The compatibility condition~6! expressed in terms of th
stress tensor reads

b]z
2sxx2c]z

2szz2c8]x
2sxx1a]x

2szz22
detL

d2
]x]zsxz50.

~18!

Combining this relation with the two equilibrium condition
of Eq. ~5!,

]zszz1]xsxz50, ~19!

]zsxz1]xsxx50, ~20!

we obtain, for any one of the components of the stress ten

~]z
41t]x

412r ]x
2]z

2!s i j 50, ~21!

where the coefficientst and r are given by

t5
a

b
5

Ex

Ez
,

r 5

ab2cc82
1

2
d~c1c8!

bd
5

1

2
ExS 2

G
2

nz

Ez
2

nx

Ex
D . ~22!

Expanding the stresses in Fourier modes, it is easy to see
the solutions of the Eqs.~19!–~21! are of the form

szz5E
2`

1`

dq(
k

ak~q!eiqx1 iXkqz, ~23!

sxz5Cxz2E
2`

1`

dq(
k

ak~q!Xke
iqx1 iXkqz, ~24!

sxx5Cxx1E
2`

1`

dq(
k

ak~q!Xk
2eiqx1 iXkqz, ~25!

whereCxx andCxz are constants. From Eq.~21!, we see that
the Xk are the roots of the following quartic equation:

X412rX21t50, ~26!

a special case of Eq.~12!. There are four solutions

X56A2r 6~r 22t !1/2. ~27!

Hence the indexk runs from 1 to 4. The four functions
ak(q) and the constantsCxx andCxz must be determined by
the boundary conditions, as shown in Sec. III and App
dix B.

We see that only two combinations,r and t, of the five
elastic constants will determine the structure of the respo
function in anisotropic materials.
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C. Main results of this paper

We show in Fig. 1 the various ‘‘phases’’ in ther -t plane
corresponding to different shapes of the response function
obtained from the calculation presented in Sec. III below

The linet5r 2, for r ,0, separates the hyperbolic and th
elliptic regions. Fort.r 2 ~region I!, the above rootsXk are
complex and we write

X152X45b2 ia, ~28!

X252X352b2 ia, ~29!

where a and b are positive real numbers. Whent,r 2,
r .0 ~region II!, one the other hand, the rootsXk are purely
imaginary and one has

X152X452 ia1 , ~30!

X252X352 ia2 , ~31!

wherea1 anda2 are positive real numbers.
Note that the isotropic limit corresponds to the pointr

51, t51. As we show in detail in Sec. III, the elliptic regio
contains a subregionr ,0, t.r 2, where the response func
tion has a two-peak structure with peak widths growing l
early with depth. As one approaches the linet5r 2, the two
peaks become narrower and narrower, finally becoming
d-function peaks exactly on the transition line. Below t

FIG. 1. (r ,t) phase diagram characterizing the qualitative nat
of the stress profiles. The shaded region corresponds to hyper
and ‘‘mixed’’ equations for stresses, whereas the unshaded re
allows for elliptic equations. The hyperbolic region is bound
above by the linet5r 2, separating it from the elliptic region. In th
elliptic region, a double-peak stress profile is found in the wh
regionr ,0. The solid and dashed straight lines are the trajecto
for the triangular spring network studied in Sec. IV, for horizon
and vertical orientation of one of the springs, respectively. The s
bols correspond to the solutions of the anisotropic linear DF
model for various values of the anisotropic scattering parametep;
see Sec. V.
2-4
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transition, there is a hyperbolic regime~region III in Fig. 1!,
where the response consists of fourd-function peaks.

The parameter ranget,0, labeled ‘‘mixed’’ in Fig. 1,
gives rise to a third type of behavior of the response funct
due to the fact that there are two real roots and two ima
nary roots. It may only appear in the nonstable pseudoela
case, and gives superposition of a hyperbolic twod peak
response function and a single-peak classically elastic
sponse function. For the particular model for the DFCN d
cussed below, the ranget,0 does not occur. Hence, this ca
is not pursued any further here.

We discuss below some particular trajectories in ther -t
plane~see Secs. IV and V!. One corresponds to simple, a
isotropic, triangular networks of springs, that lead on la
scales to classical anisotropic elasticity with parameters
the plain and dotted straight lines, corresponding to two
entations of the lattice~see Fig. 10!. Both trajectories meet a
the point (1,1) corresponding to an isotropic medium wh
all springs have the same stiffness. Moreover, both traje
ries cross the regionr ,0 and thus allow for two-peak re
sponse functions. Inclusion of three-body forces perm
spring networks with (r ,t) anywhere in region I or II~see
Sec. IV!.

We have also computedr and t for the linear DFCN
model, for a particular model for scattering where the deg
of anisotropy is tuned in terms of a parameterp ~see Sec. V!.
The results are shown as symbols, and appear to always
the elliptic region. As in the spring networks, for sufficient
anisotropic scattering, one enters the regionr ,0 where the
response function has two peaks.

In two classical papers@24#, Greenet al. have treated the
stress distribution inside plates with two directions of sy
metry with right angles to each other. The solutions are
rametrized, apart from boundary conditions, bya1 ,a2 ~not
to be confused witha i introduced above!, which are related
to the setr ,t by (r 1Ar 22t/t),(r 2Ar 22t/t). The authors
assume their parametersa1 ,a2 to be always real and pos
tive, based on empirical fits of elastic constants for timb
such as oak and spruce. This choice corresponds to regi
in Fig. 1. Consequently, the possibility of regions I and
behavior, and particularly the appearance of a double-p
response for a classically elastic material, is not discusse
@24#. Moreover, their analysis considers the response in
case where the boundaries and the directions of symm
are either parallel or perpendicular to each other, whereas
present discussion—see, in particular Sec. III B—treat
more general case. The response functions for region II
computed in the present work, could, in principle, be rec
structed from the results of Ref.@24#.

III. SHAPE OF THE RESPONSE FUNCTION

After having discussed the general framework of ani
tropic elasticity and the particular example of tw
dimensional systems with uniaxial symmetry, we now turn
the actual shape of the response function in such mater
We will calculate the response of an elastic or pseudoela
slab of infinite horizontal extent to a localized force appli
at the top surface. We shall consider the case of a se
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infinite system with a force applied at a single point on
surface, for which complete analytical solutions can be
tained. More general situations~finite spatial extension of the
overload, finite thickness of the slab with a rough or smo
bottom, . . . ) should be considered to obtain quantitative fi
of experimental@16,17# and numerical data. Still, two angle
are left free: the angleu0 that the applied force makes wit
the vertical, and the orientation anglet of the anisotropy
with the vertical.

A. Vertical anisotropy

We are interested in the response of a semi-infinite sys
to a localized force at its top surfacez50. We suppose tha
this force is of amplitudeF0 and makes an angleu0 with the
vertical direction, as shown in Fig. 2. The correspondi
stresses atz50 are then

szz5F0 cosu0d~x!, ~32!

sxz5F0 sinu0d~x!. ~33!

To obtain the results described below, we make use of
identity

d~x!5
1

2pE0

1`

dq~eiqx1e2 iqx!, ~34!

and impose the boundary condition by identifying the co
ficients ofe6 iqx in the Eqs.~32! and ~33!, and~23!–~25! at
z50. Note thatsxx(z50) is not determined by the bound
ary conditions.

Whenz→1`, we expect all stresses to decay to zero
turns out that this is a self-consistent condition as long as
system is energetically stable, but cannot be imposed in
unstable regime. The reader interested in a more deta
derivation of the following results can consult Appendix B

1. Region I (elliptic): tÌr 2

Since we want all the stresses to vanish at large depth
functions a1 and a2 in Eqs. ~23!–~25! must be zero forq
.0, anda3 anda4 must vanish forq,0. In addition,Cxx
and Cxz must all vanish. Furthermore, because the stres
are real quantities,a1(2q)5a3* (q) anda2(2q)5a4* (q).

The boundary conditions atz50 then imply

FIG. 2. Force at the top surface.
2-5
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a35
F0

4pb
@~b2 ia!cosu02sinu0#, ~35!

a45
F0

4pb
@~b1 ia!cosu01sinu0#. ~36!

Since the coefficientsa3 and a4 are independent ofq, the
integrals in Eqs.~23!–~25! are straightforwardly carried out
yielding

szz5
F0

2p

4az2@zcosu0~a21b2!1xsinu0#

@~a22b2!z21x2#21@2abz2#2
, ~37!

sxz5
x

z
szz, ~38!

sxx5S x

zD
2

szz. ~39!

The latter two results follow directly from the observatio
that the integrals in Eqs.~24! and ~25! can be expresse
simply as convolutions ofszz(q) with the Fourier transforms
of x/z and x2/z2, respectively. In the limitb→0 ~which
corresponds tor 22t→0) anda→1, we recover the familiar
isotropic formulas@21#.

Figure 3 shows the response for four different choices
the parameterr and a fixedt, each being shown for thre
choices ofu0. Note thatszz has a more pronounced doubl

FIG. 3. Region I: rescaled stress profiles for several directio
u0 of the applied force and several values ofr, with t52. In each
panel, the thick solid line is forr 521.3, the thick dashed line is
for r 520.7, the thin solid line is forr 520.2, and the thin dashe
line is for r 50.5. r .0 is the condition to have a single-peake
profile for u050.
03130
f

peak structure for increasingly negativer. For u050, the
condition for having a double peak is]x

2szz(x50).0,
which occurs whena2,b2, or equivalentlyr ,0. In terms
of the Young and shear moduli and the Poisson ratios,
condition can be expressed asG.Ex /nx5Ez /nz . The posi-
tions of the peaks are then given byx56zAb22a25
6zAur u. From the curvature at the maximum, one can defi
a width w of these peaks which reads

w5
ab

A2

1

Ab22a2
z5

At2r 2

2A2ur u
z. ~40!

Thus, the peaks become sharper and sharper as one
proaches the hyperbolic limitt5r 2.

A very important point is that the response profiles sc
with the reduced variablex/z when multiplied by the height
z. This means that, when the profile is double peaked, th
two peaks get larger in the same way that they get away f
each other. Such a response cannot therefore be seen
‘‘hyperboliclike’’ signature, for which the peak width com
pared to the distance between the peaks goes to zero at
depth. However, in the limit wheret→r 2, the width of the
peak vanishes, and the response becomes truly hyperbo

2. Region II (elliptic): tËr 2, rÌ0

Again, we only keep the functionsa1 and a2 for q,0,
anda3 anda4 for q.0. This time, the fact that stresses a
real quantities requiresa1* (2q)5a4(q) and a2* (2q)
5a3(q). A similar analysis to the above yields

szz5
F0

2p

2~a11a2!z2@a1a2z cosu01x sinu0#

@~a1z!21x2#@~a2z!21x2#
, ~41!

sxz5
x

z
szz, ~42!

sxx5S x

zD
2

szz. ~43!

For a15a251 ~again r 22t50), we recover the isotropic
formula. In this case, however, whenu050, szz always pre-
sents a single peak, see Fig. 4. Depending on the value
a1 anda2, the profiles can be broader or narrower than
isotropic response, as has been observed experimentall
respectively, dense and loose packings@16#.

3. Region III (hyperbolic): tËr 2, rË0

In this case, all the rootsXk are real, and the respons
function is the sum of fourd peaks, at positionsx5Xkz. The
appearance of four peaks is different from previous hyp
bolic models@3,4# giving two peaks in which case the clo
sure relation for the stresses is linear, whereas here the
sure is achieved by a fourth-order partial different
equation, Eq.~21!. The four peaks merge into two peak
exactly on the hyperbolic-elliptic boundaryt5r 2. The rea-
son why previous hyperbolic models@3,4# work so well
could be that granular system such as sandpiles are clo
2-6
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ANISOTROPY IN GRANULAR MEDIA: CLASSICAL . . . PHYSICAL REVIEW E 67, 031302 ~2003!
the hyperbolic-elliptic boundary~see also Sec. IV B for fur-
ther remarks!. Inside region III, the fact that all roots are re
excludes the possibility to require stresses to vanish for la
z. This leads to a situation where there are more constan
integration than boundary conditions.

One may advance on the analytical form of respo
functions using physical arguments as follows. Let us fi
rewrite the equation for stresses~21!, as follows:

~]z
22c1

2 ]x
2!~]z

22c2
2 ]x

2!s i j 50, ~44!

where

c6
2 52r 6Ar 22t, ~45!

leading toc6>0. The constants6c6 are just the four rea
roots Xk mentioned above. Instead of solving the equat
above, we consider special solutionss i j

1 , s i j
2 of the follow-

ing partial differential equation:

~]z
22c6

2 ]x
2!s i j

650, ~46!

which automatically satisfy Eq.~44!. Both equations can be
solved for the boundary conditions~32! and~33!, giving the
solutions

szz
65

F0

2 S Fcosu02
sinu0

c6
Gd~x1c6z!

1Fcosu01
sinu0

c6
Gd~x2c6z! D , ~47!

FIG. 4. Region II: stress profile for different cases. The sol
thick line is for t51 andr 51 ~isotropic case!, the thick dashed line
is for t51 andr 52.125, and the solid thin line is fort52 andr
51.5.
03130
e
of

e
t

n

sxz
6 5

F0

2
$2@c6cosu02sinu0#d~x1c6z!

1@c6cosu01sinu0#d~x2c6z!%, ~48!

sxx
6 5

F0

2
$c6@c6cosu02sinu0#d~x1c6z!

1c6@c6cosu01sinu0#d~x2c6z!%. ~49!

Before constructing a general solution froms i j
6 , let us re-

mark that there are, in principle, additional solutionss̃ i j sat-
isfying

~]z
22c6

2 ]x
2!s̃ i j 5s i j

7 . ~50!

However, these solutions are not finite as they involve div
gences arising from integrals such as*2`

` dq cos(qu)/q2.
Therefore, we conclude that a general solution of Eq.~44!
may be constructed as

s i j 5a1s i j
11a2s i j

2 . ~51!

It should satisfy the boundary conditions~32! and ~33!,
which yield a relation

a11a251. ~52!

The coefficientsa1 and a2512a1 are relative weights
which indicate how the applied load is shared between
two sets of force chains characterized byc6 . As there is no
physical mechanism introduceda priori which prefers one
set of force chains to the other, we are left with one fr
parameter, saya1 , for the response functions i j . The am-
biguity on the value ofa1 could be resolved by considerin
e.g., a microscopic model that leads to Eq.~44!.

In Fig. 5, the propagation of the applied force along t
characteristics is shown. Note that the sign ofszz may
change along a certain characteristic if cosu02(sinu0)/c6

,0 @see Fig. 5~b!#.

B. Anisotropy at an angle

We now, for completeness, generalize the results of
previous sections to the case where the direction of the
isotropy makes an arbitrary anglet with the vertical.~The
preceding section corresponds tot50.) This situation may
be relevant for systems that are initially sheared as in
experiments of Genget al. @27#, or prepared in a way which
breaks the symmetryx↔2x. We restrict the discussion to
regions I and II~the computation for region III can be carrie
out in a similar fashion!.

The equivalent of the relation~7! involves now a matrix
Lt which is related toL† of Eq. ~13! by

Lt5Q 21L†Q, ~53!

whereQ is the rotation matrix
2-7
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Q5S cos2t sin2t 22 sint cost

sin2t cos2t 12 sint cost

sint cost 2sint cost cos2t2sin2t
D .

~54!

The differential equation on the stress components tha
deduced from the compatibility condition and stress-str
relations is now much more complicated, but the correspo
ing roots of the fourth-order polynomial that appear wh
looking at Fourier modes can still be calculated from theXk
solutions of Eq.~26!. They read

Yk5
Xk2tant

11Xktant
, k51, . . . ,4. ~55!

The same method as above~see also Appendix B! can then
be applied to find the stress response functions for a lo
ized overload at the top surface of the material. Note that
material properties are still determined by theXk associated
with L†. In particular, whether the response is elliptic
hyperbolic cannot depend ont. In the following, regions I
and II are defined with respect toXk as above.

1. Region I

The Xk are of the form6b6 ia, see Eqs.~28! and ~29!.
The correspondingYk can be constructed with the followin
quantities

FIG. 5. Region III: the stress profile as a sum of fourd func-
tions. The characteristicsx56c6z along which the applied load is
propagated are shown. Parameters arer 521.0, t50.75 giving
c151.5 ~solid lines! and c250.5 ~dashed lines!. The d functions
are indicated by cartoons.~a! u050, ~b! u05p/4.
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A5
a~11tan2t!

~11b tant!21~a tant!2
, ~56!

B5
b~12tan2t!1tant~a21b221!

~11b tant!21~a tant!2
, ~57!

A85
a~11tan2t!

~12b tant!21~a tant!2
, ~58!

B85
b~12tan2t!2tant~a21b221!

~12b tant!21~a tant!2
. ~59!

The same boundary conditions~see Fig. 2! lead to

szz5
F0

2p

2z2

@~x1Bz!21~Az!2#@~x2B8z!21~A8z!2#

3$xsinu0~A1A8!1zcosu0@AA8~A1A8!1AB82

1A8B2#1@xcosu01zsinu0#~A8B2AB8!%. ~60!

sxz andsxx are related toszz by the usual factors ofx/z and
(x/z)2, respectively.

Figures 6 and 7 show the pressure response profile
different parameters are varied. In Fig. 6 the applied force
kept vertical (u050), andt is varied from 0 top/4. Inter-
estingly, the initially double-peaked profile@Fig. 6~a!# is pro-
gressively deformed in such a way that the left peak g
more pronounced, until the remaining single peak moves
the right for t5p/4. This behavior might be counter
intuitive for smallert, because a positive value oft means
that the main direction of the anisotropy is oriented to t
right. However, it can be understood within the ball-an
spring model of Sec. IV, where thek1 springs are horizontal
Rotating to the right the two stiff directionsk2 emerging
from a ball downwards brings the left one closer to the v
tical direction, which therefore gets a larger fraction of t
overload. Continuing pastt5p/6, however, the stiffer
springs form lines that slope downward to the right. Sin
they continue to support most of the load, the single pea
shifted to the right. This behavior holds also for the sing
peaked profiles of Fig. 6~b!.

The second series of plots~Fig. 7! is for the case where
the applied force is exactly in the direction of the anisotro
(u05t). The corresponding curves are qualitatively simi
to those of Fig. 6. The direction of the force imposed at
top does not change the general shape~anisotropic double or
single peak! except for the fact that a negative pressure zo
evolves for large negativex.

The value of 0.6 fort used in the Figs. 6 and 7 is mot
vated by experimental findings@28#. The response function
shown in Fig. 6~b! for t5p/4 is at least qualitatively con
sistent with the response functions measured in Ref.@27#.
2-8
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2. Region II

In region II, where X152X452 ia1 and X252X3
52 ia2, the expressions of the correspondingYk involve the
quantities

A15
a1~11tan2t!

11~a1tant!2
, ~61!

B15
tant~a1

221!

11~a1tant!2
, ~62!

A25
a2~11tan2t!

11~a2tant!2
, ~63!

FIG. 6. Region I: response profiles for different values of th
anisotropy anglet, but with a fixed value for the orientation of th
applied force:u050. The graph~a! is for t50.6 and r 520.2,
while ~b! has been obtained fort50.6 andr 50.2. Note that for the
three smallestt.0 the response is stronger in the negativex region.
03130
B25
tant~a2

221!

11~a2tant!2
, ~64!

the pressure response having the form

szz5
F0

2p

2z2

@~x1B1z!21~A1z!2#@~x1B2z!21~A2z!2#

3$x sinu0~A11A2!1z cosu0@A1A2~A11A2!1A1B2
2

1A2B1
2#1@x cosu01z sinu0#~A2B11A1B2!%. ~65!

Again, the expressions ofsxz andsxx are not shown, but can
be deduced as usual from that ofszz.

Figures 8 and 9 show the response profile for differ
values of the parameters. Depending on these parameter
response peak can be moved to the right or to the left w
positive values oft.

FIG. 7. Same graphs as in Fig. 6, but this time withu05t as
indicated in the legends.
2-9
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Please note that the response function shown Fig. 8~b! for
t5p/4 also agrees qualitatively with the experimental fin
ings in Ref.@27#. A more detailed analysis of their results
certainly worthwhile, also in order to possibly decid
whether region I or II behavior applies for a sheared tw
dimensional layer where the angle of the preferred orien
tion of force chains coincides witht5p/4.

IV. TRIANGULAR SPRING NETWORKS
AND ANISOTROPIC ELASTICITY

A. Triangular spring networks

To illustrate the previous calculations, it may be useful
construct a ball-and-spring model with a tunable param
that allows us to obtain different relative values ofa, b, c,

FIG. 8. Region II: response profiles for different values of th
anisotropy anglet, but with a fixed value for the orientation of th
applied force:u050. The graph~a! is now for t52 and r 51.5,
while ~b! has been obtained fort50.6 andr 50.8. This time, the
response peak can be moved to the right or to the left with pos
values oft.
03130
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and d above. Here, we consider a triangular lattice of ba
with springs connecting all nearest-neighbor pairs. The
tice may be oriented in either of the two ways as shown
Fig. 10, and the springs have stiffnessesk1 or k2 as shown
for the two cases. All springs lying along a given directio
have the same stiffness. We take the equilibrium lengths
all springs to be unity.

In either orientation, the system has reflection symme
underx→2x andz→2z, but not under rotations; it is de
scribed by an anisotropic stress-strain relation involvingL†.

e

FIG. 9. Same graphs as in Fig. 8, but withu05t as indicated in
the legends.

FIG. 10. Network of springs of stiffnessk1 andk2.
2-10
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We determine the elastic coefficients by writing down t
energy directly for a homogeneous deformation. Note t
the balls form a Bravais lattice, and hence that their displa
ments for a given average strainui j are simply given by
ui j r j , where r is the equilibrium position of the ball. The
energy density can easily be obtained by summing the e
gies of the three springs linking the ball at (0,0) to its neig
bors along different lattice directions and dividing by t
area of the unit cell,A5A3/2.

1. Horizontal orientation of the k1 springs

For the case, where thek1 spring is horizontal, we find for
the energy density,

F5
1

16A
@~8k11k2!uxx

2 19k2uzz
2 16k2uxxuzz

13k2~uxz1uzx!
2#, ~66!

which corresponds to a matrixL† with the following coeffi-
cients:

a5
8k11k2

8A
, ~67!

b5
9k2

8A
, ~68!

c5
3k2

8A
, ~69!

d5
6k2

8A
. ~70!

Without loss of generality, we rescale all stiffnesses by
factor 8A/k2 and letk1 /k2 be denotedk. The coefficientsr
and t of Eq. ~26! are then given by

t5
118k

9
, ~71!

r 5
4k21

3
, ~72!

which gives r 22t5 16
9 k(k21). We may eliminatek from

these two equations to obtain a trajectory in (r ,t) space:

t5
2r 11

3
, ~73!

shown as the plain line in Fig. 1.
Thus,k,1 ~weak horizontal springs! corresponds to re

gion I above with@see Eq.~28!#

a25
1

6
~4k211A8k11!, ~74!

b25
1

6
~124k1A8k11!. ~75!
03130
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As mentioned above, the condition for a double-peakedszz
profile is r ,0. Hence, the single-peaked shape ofszz(x)
becomes double peaked whenk,1/4, i.e., when the horizon
tal springs are substantially softer than the others.

For k.1, on the other hand, we are in region II with@see
Eq. ~30!#

a1
25

1

3
@4k2114Ak~k21!#, ~76!

a2
25

1

3
@4k2124Ak~k21!#. ~77!

Theszz profile is always a single peaked when the horizon
springs are stiffer than the others.

2. Vertical orientation of the k1 springs

For the case where thek1 spring is vertical, we get a
matrix L† where the coefficientsa andb have been swappe
from the horizontal case, i.e., with the following coefficien

a5
9k2

8A
, ~78!

b5
8k11k2

8A
, ~79!

c5
3k2

8A
, ~80!

d5
6k2

8A
. ~81!

Again, we rescale the stiffnesses and letk5k1 /k2, this time
finding

t5
9

118k
, ~82!

r 5
3~4k21!

118k
, ~83!

which gives r 22t5144k(k21)/(118k)2. As before, k
may be eliminated to obtain the trajectory in (r ,t) space:

t522r 13, ~84!

now corresponding to the dotted line in Fig. 1.
For k,1, we are in region I with

a25
9k

118k
, ~85!

b25
3~12k!

118k
. ~86!

Again, the single-peaked shape of theszz profile becomes
double peaked whenk,1/4.

For k.1, we haver 22t.0 and we are in region II, with
2-11
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a1
25

3

118k
@4k2114Ak~k21!#, ~87!

a2
25

3

118k
@4k2124Ak~k21!#. ~88!

3. Three-body (bond-bending) interactions

For the spring networks discussed above, the Poisson
tios are not both adjustable simultaneously. For the horiz
tal orientation ofk1 springs,nx5c/a is always 1/3, while for
the vertical orientationnz5c/b is always 1/3. In order to
have a ball-and-spring model on a Bravais lattice in wh
all elastic parameters can be varied independently, it is n
essary to introduce three-body interactions. A straightforw
way of doing this is to assume an energy cost for bond an
that differ from 60°.

For simplicity, we present an analysis only for the ca
where the triangular lattice is oriented so that thek1 springs
are horizontal. Consider the triangle of balls and sprin
shown in Fig. 11. We defineuY as/XYZ, measured in the
strained configuration. For the case of uniaxial symmetry,
energy of the triangle is determined by two bond-bend
stiffnessesk1 andk2. For case I, we define

Ebb5~1/2!Fk1S uA2
p

3 D 2

1k2S uB2
p

3 D 2

1k2S uC2
p

3 D 2G ,
~89!

with k1 assigned to the angle opposite the horizontal ed
As for Eq. ~66!, we take the equilibrium lengths of th
springs to be unity.

Writing expressions for the angles in terms of displa
ments of the balls from their equilibrium positions and su
ming over all triangles, including the upside-down on
~shown dashed in Fig. 11! on a homogeneously strained la
tice, we find a contribution to the total energy density of

Fbb5
3

8A
@~2k11k2!~uxx

2 1uzz
2 !22~2k11k2!uxxuzz

112k2uxz
2 #. ~90!

Adding this contribution to Eq.~66! gives a total energy
density corresponding to a matrixL† with coefficients

FIG. 11. Variables associated with three-body bond-bending
teraction.
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a5
8k11k216k

8A
, ~91!

b5
9k216k

8A
, ~92!

c5
3k226k

8A
, ~93!

d5
6~k216k2!

8A
, ~94!

wherek[2k11k2. In terms of bulk and shear moduli an
Poisson ratios, we obtain

Ez5
9k1k216~k112k2!k

~8k11k216k!A
, ~95!

Ex5
3k1k212~k112k2!k

~3k212k!A
, ~96!

G5
6~k216k2!

8A
, ~97!

nz5
3k226k

8k11k216k
, ~98!

nx5
k222k

3k212k
. ~99!

Note thatExnz5Eznx , as expected. Note also that it is n
necessary fork1 , k2 , k1, andk2 to all be positive. Stability
@cf. Eq. ~17!# requires only

8k11k216k.0, ~100!

3k212k.0, ~101!

3k1k212k~k112k2!.0, ~102!

k216k2.0. ~103!

From Eq.~22!, we find

t5
8k11k216k

3~3k212k!
, ~104!

r 511S 4

3D3k1k212k~k112k2!

~3k212k!~k216k2!
2

4k2

3k212k
. ~105!

By choosingk1 , k2, andk, we can obtain any positive valu
for t. From Eqs.~100!–~103!, we see that the second term
the expression forr is positive. For fixedt, we can maker
arbitrarily large by choosingk2 close to2k2/6. The smallest
~or largest negative! value of r is obtained by choosing

-

2-12
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ANISOTROPY IN GRANULAR MEDIA: CLASSICAL . . . PHYSICAL REVIEW E 67, 031302 ~2003!
3k1k212k(k112k2)50 ~and adjustingk1, say, to keept
fixed!. This leads tor 22t50 andr ,0, demonstrating tha
the triangular lattice can lie anywhere in region I or II.

B. Remarks

We have seen that classical anisotropic elastic mate
can have double-peaked response functions and that
cases can be obtained with simple ball-and-spring mod
These calculations explain, for example, the numerical
sults of Goldenberg and Goldhirsch@18#, without invoking
any special considerations on small system sizes.

It is important to note that the response functions for
triangular spring networks always lie in the elliptic regim
the peaks broaden linearly with depth. Thus, the observa
of a double-peak structure isnot necessarily an indication o
propagative ~hyperbolic! response in an elastic materia
However, when thek1 springs are oriented horizontally, an
in the limit where their stiffness tends to zero, the respo
becomes hyperbolic. In this case, one generically exp
peaks to broaden diffusively, i.e., likeADz @6,25#. Note that
in the limit wherek1→0, there appears a floppy~zero en-
ergy! extended deformation mode which, as emphasized
Tkachenko and Witten@10#, naturally leads to a stress-on
closure equation and hyperbolicity. In the phase diagr
Fig. 1, this limit corresponds to the point where the strai
solid line touches the boundary curvet5r 2. Note that within
this line of thought, one should also expect hyperbolic
sponse in elastic percolation networks at the rigidity thre
old. In fact, in the limit k1→0 the triangular network be
comes a rhombic network which is known to becom
isostatic for a finite system: a single boundary suffices~say a
bottom surface in the slab geometry! in order to suppress th
zero mode, and the system becomes rigid@9#.
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V. ANISOTROPIC DIRECTED-FORCE CHAIN NETWORKS

A. Biased scattering

In Ref. @13#, a Boltzmann equation for the chain-splittin
model was derived for a granular medium which is stron
disordered. In the present work, we suppose that the sca
ing of force chains by defects is biased by a preferred ori
tation of the material, modeled in terms of a global direc
N. We intend to describe systems possessing a uniaxial s
metry, which have undergone compaction or shearing
which have been constructed by sequential avalanching
to grains poured from a horizontally moving orifice.

The fundamental quantity is the distribution functio
P( f ,n,r ), where

P~ f ,n,r !d f dndDr ~106!

gives the number of force chains with intensity betweef
and f 1d f , inside the~solid! angledn around the direction
n, in a small volume elementdDr centered atr . Integration
of P( f ,n,r ) with respect tof andn will yield the density of
force chains at the pointr . @30# The distribution function is
defined with respect to an ensemble of different realizati
of force chains for an assumed uniform spatial distribution
point defects~of density rd), with same boundary condi
tions. In the spirit of previous models@7,26# that give hyper-
bolic equations for the stresses, a mechanism of propaga
is implemented, but now on the local level of force chains.
the analytical model presented here, a pairwise merge
force chain to a single one will be neglected. The limitati
of this approximation will be discussed below. Then the d
tribution functionP( f ,n,r ) obeys the following linear equa
tion:
P~ f 1 ,n1 ,r1n1dr !5S 12
dr

l D P~ f 1 ,n1 ,r !12
dr

l E d f8E d f2E dn8E dn2P~ f 8,n8,r !C~n8→n1 ,n2uN!

3d~ f 1cosu11 f 2cosu22 f 8!d~ f 1sinu11 f 2sinu2!usin~u12u2!u, ~107!
ce
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wherel is the mean free path of force chains, and is of
order of 1/(rdl D21) in D dimensions. The lengthl represents
the average size of a grain. The equation means the foll
ing: a force chain at some pointr1n1dr is either due to an
unscattered force chain, which occurs with the probabi
that no scattering occurs times the probability that the sa
force chain existed at pointr ~given by the first term on the
right-hand side~rhs! of the equation!, or to a scattered force
chain. The latter occurs with the probability given by t
second term on the rhs of the equation: it is the sum w
respect to all intensities and directions of the incoming~la-
beled by a prime! and the second outgoing force chains
the product of the probability for the incoming force chain
arrive at r times the probability of scattering (dr/l)C(n8
→n1 ,n2uN). Thed functions impose conservation of force
e

-

y
e

h

f

the factor 2 accounts for the number of outgoing for
chains, and the factorusin(u12u2)u is convenient to write ex-
plicitly rather than include inC. The dependence of th
scattering probability onN requires to consider the outgoin
force chains separately. In the absence ofN the outgoing
force chains may be treated symmetrically, and one reco
the linear model for an isotropic medium@13#.

The analytical model presented for biased force ch
scattering does not take into account fusion of force cha
which leads, in general, to a nonlinear Boltzmann equati
For an isotropic medium the consequences of fusion h
been discussed for a model where force chains are restr
to lie on exactly six directions@14#. In this discrete model the
validity of the linear approximation was explicitly shown t
be restricted to shallow systems~depths smaller than a few
2-13
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timesl) and small forces. However, preliminary results on
discrete model with eight directions suggest that the lin
theory might have a wider scope of application than expec
from the study on the six-leg model. More precisely, a pro
analysis of the linear perturbation analysis around the
nonlinear solution of the Boltzmann equation might share
some regimes, many properties of the linear solution p
sented here. In any case, one can see the present analy
a shallow layer approximation where the fusion of chains
indeed be neglected.

Instead of solving Eq.~107!, we first introduce the scala
local average force densityF(n,r ), i.e., the local scalar force
field per unit volume, defined as

F~n,r !5E
0

`

d f f P~ f ,n,r !. ~108!

Then, multiplying Eq.~107! by f, we obtain the following
equation forF(n1 ,r ):

ln1•“ rF~n1 ,r !

52F~n1 ,r !12E dn8E dn2F~n8,r !C~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
. ~109!

This equation is identical in form to the Schwarzschi
Milne equation for radiative transfer@31#, though, unlike the
situation in radiative transfer problems, the albedo is lar
than unity. Let us note that the possibility to rewrite t
Boltzmann-type equation~107! in terms of the force density
F(n,r ) is only possible for the linear model.

From now on, we take all lengths in units ofl which
amounts to formally settingl 51. Now, we introduce physi-
cally relevant angular averages

p~r !5E dnF~n,r !, ~110!

Ji~r !5E dnniF~n,r !, ~111!

s i j ~r !5DE dnninjF~n,r !, ~112!

where*dV is a normalized integral over the unit sphere. T
field p is the isostatic pressure, whileJ may be interpreted a
the local directed average force chain intensity per unit s
face. Now, given a local snapshot of a force chain netwo
one can usually not tell the direction of each chain. Mo
over, the average force vanishes everywhere in the syste
a consequence of Newton’s third law. The directions
chains are actually determined by the boundary conditio
say on the top and bottom of a granular layer, which ther
determine the fieldJ in the bulk. It is the propagation o
force chains starting from the boundaries of the system m
eled by Eq.~107! which leads to the orientation of the forc
chain network. Finally, the tensors is the stress tensor.
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B. Stress equilibrium at large length scales

We now proceed to obtain the equations governing
physically relevant fields introduced above, by calculati
the zeroth, first, and second moment with respect toni of Eq.
~109!. The equations read as

l“•J5~c121!p1c2sNN , ~113!

] js i j 50, ~114!

l

~D12!
~d i j“•J1] iJj1] j Ji !

5B0s i j 1d i j ~B1l“•J1B2sNN!1NiNj~B3l“•J

1B4sNN!1B5~Nis jkNk1Njs ikNk!, ~115!

wheresNN5N•s•N. The second equation~114! is readily
obtained upon averaging, while the first and third, equati
~113! and ~115!, are obtained using an Chapman-Ensko
type expansion of the local average force densityF(n,r ) in
terms of the fieldsp, J, ands already given in Ref.@13#:

F~n,r !5p~r !1Dn•J~r !1
D12

2
n•ŝ~r !•n1•••.

~116!

Let us remark that Eq.~114! gives mechanical equilibrium a
expected and is independent on the specific form ofC(n8
→n1 ,n2uN). The validity of the Chapman-Enskog expansi
is based on the assumption that on large enough length s
an isotropic state is reached. For the case of biased scatt
of force chains considered here, this implies that the b
intensity must not be too strong. Then the statistical wei
of the set of force chains propagating through the entire s
tem without changing their direction will not be importan
The limiting case of strong bias requires a different appro
than the one presented here.

The constantscm and Bm appearing in Eqs.~113! and
~115!, respectively, are angular integrals involving the micr
scopic model for the scattering process, i.e., a specifica
of C(n8→n1 ,n2uN). A specific model will be considered in
Sec. V D. If one neglects the dependence onN in the equa-
tions above, one recovers the simpler equations for fo
chain splitting in an isotropic granular medium@13#.

C. A linear pseudoelastic theory

As in the isotropic case, one would like to see if Eq.~115!
can be cast into a form where the stress tensors i j is a linear
function of a pseudostrain tensor

ui j }
1

2
~] iJj1] j Ji !, ~117!

giving rise to the relation

s i j 5l i jkl ukl , ~118!

wherel i jkl is the anisotropic pseudoelastic modulus tens
Similarly to conventional elasticity theory as mentioned
2-14
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Sec. II, we will see that the tensorl i jkl satisfies the symme
tries given in Eq.~2!. The symmetric form ofui j stems from
the symmetries appearing in the derivation of the large s
equations when carrying out angular averages, in particu
*dnninjnknl . In Eq. ~115!, the gradients of the fieldJi ap-
pear only in combinations such as“•J and ] iJj1] j Ji .
Please note, however, that unlike in classical anisotropic
ear elasticity theory, in the present case,

l i jkl Þlkli j , ~119!

except for certain cases imposed by the details of the s
tering process. The absence of the symmetry present in
classical theory is possible because there is no underl
free energy functional.

The relation between the stress tensor and the pseudo
tic strain tensor can be derived using the second moment
~115!. The latter can be rewritten in the following form:

Ji j 5Bi jkl skl , ~120!

where

Ji j 5l“•JFd i j S 1

D12
2B1D2B3NiNj G1

l

D12
~] iJj1] j Ji !

~121!

and

Bi jkl 5
B0

2
~d ikd j l 1d i l d jk!1B2d i j NkNl1

B5

2
~d j l NiNk

1d jkNiNl1d ikNjNl1d i l NjNk!1B4NiNjNkNl .

~122!

The relation betweenJi j andskl can be inverted to give

s i j 5
1

2
Ai jkl Jkl , ~123!

whereAi jkl has the same form asBi jkl with the constantsBm
being replaced by constantsAm which are obtained from the
relation

Ai jkl Bklmn5I i jmn5d imd jn1d ind jm . ~124!

In particular, one obtains the following relations for the co
stantsAm :

A05
2

B0
, ~125!

A252
2B2

B0~B01B21B412B5!
, ~126!

A45

S 22B41
4B5

~B01B5!
~B21B41B5! D

B0~B01B21B412B5!
, ~127!
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A552
2B5

B0~B01B5!
. ~128!

Now, one can finally determine the pseudoelastic modu
tensor in terms of the tensorAi jkl ,

l i jkl 5
l

D12 S Ai jkl 1
1

2
Ai jmmdklD

2
l

2
~B1Ai jmm1B3Ai jmnNmNn!dkl . ~129!

Thus, the pseudoelastic modulus tensorl i jkl becomes—via
the tensorAi jkl and the constantsAm—a function of the con-
stantsBm which depend on the specific scattering mod
used.

In the following section, a special case will be studi
which allows us to derive a simple, but nontrivial equati
for the stresses which supplemented by the mechanical e
librium condition ~114! opens a way to determine the stre
tensor, or, put differently, the response function.

D. A microscopic model for force chain splitting
in the presence of a bias

As mentioned in the preceeding section, the entries of
pseudoelastic modulus tensor depend on the specific m
for anisotropic scattering which is specified in terms of t
scattering cross section conditional on the global directorN,
C(n8→n1 ,n2uN). We have considered a specific model f
force chain splitting. It tunes the strength of the bias
scattering parallel toN, using a weight for each outgoin
chain proportional to powers of a cosine factor quantifyi
the degree of collinearity with the global directorN ~see Fig.
12!.

For each force chain arriving at a defect in the directi
n8 two outgoing force chains are chosen in the directionsn1
and n2 as follows: the angle of one chain, say number
with respect to the incoming force chain is chosen w
weight }(n1•N)2p, for a positive integerp, in the interval
@0,umax# ~or @2umax,0#), while the other outgoing chain
say 2, is chosen uniformly in the interva
@2umax,u1# ~or @2u1 ,umax#, respectively!. The reason for
choosing the direction of the second chain like this is that
first ~biased! chain should carry most of the intensity of th
incoming force. Increasingp leads to scattering which is
more and more biased in the the directionN. The form of the
scattering cross section is therefore chosen as

C~n8→n1 ,n2uN!5Cp@c~u2uu1!~n1•N!2p

1c~u1uu2!3~n2•N!2p#. ~130!

The functionsc(u i uu j ) are the respective~uniform! prob-
abilities for u i given u j described above. The constantCp is
a normalization factor which depends on the angle betw
n8 andN and which is determined from

E dn1E dn2C~n8→n1 ,n2uN!51, ~131!
2-15
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and its explicit form is given in Appendix A 4.
The simplest choice for the global director isN5 ẑ, i.e., if

force chains are scattered preferably downward. We m
think of a granular layer that has undergone compaction b
vertical load. In this case, the matrixL† relating the stress
and pseudostrain tensor has the block-diagonal form as g
in Eq. ~13!. Any other orientation ofN can be related to the
vertical one by an appropriate rotation@see Sec. III B, Eq.
~53!#.

The numerical values of the parametersr andt that deter-
mine the shape of the response function~see Fig. 1! depend
in the case of the anisotropic linear directed-force chain n
work model on the constantsBm introduced in the preceding
section. The latter are calculated from the above microsco
scattering model~see Appendix A! and are listed in Tables
I–IV of Appendix A for different choices of the maximum
angleumax of the scattering cone and different bias inten
ties p.

Interestingly, the roots we find for this scattering mod
all lie in the ~elliptic! regions I and II introduced in Fig. 1
Hence, it is possible to find an anisotropic scattering rule t
leads to a two-peak structure of the response function, bu
no cases the values ofr and t have been found to lie in the
hyperbolic region. Whether this is a limitation of the line
treatment of the DFCN, as suggested by the analysis of
six-fold model @14#, is at present not settled. Work in th
direction is underway@32#.

We finish this section with the following remark. If on
identifies the elastic constants of classical anisotropic ela
ity theory and their geometrical generalizations obtained
the linear anisotropic DFCN, as we have always done
plicitly here, the possible range of values which occur
typical granular materials can be discussed. Experiments
dicate that in samples of sand which are filled from abo
and where the major principal axis of a stress tensor is in
vertical direction,t5Ex /Ez attains values in the range 0.
,t,1 ~see Ref.@33#!. For the maximum scattering angle
plotted in Fig. 1, the values oft determined from the specifi
microscopic model for biased force chain scattering u
here appear to satisfy the experimental range. Further in
mation on the construction history of the sand samp
which affects, e.g., the distribution of packing defects or
strength of the scattering bias, is needed to fully judge
quality of the anisotropic DFCN model presented here.

FIG. 12. The microscopic scattering model. The length of
arrows are different to illustrate the amount of force transmit
along the directions.
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VI. CONCLUSION

The main objective of this paper was to work out in d
tails the response function to a localized overload in the c
of linear anisotropic elastic, or pseudoelastic materials in t
dimensions.

After working out the details of two specific microscop
models, a triangular network of springs and an anisotro
directed force network, we have shown that the result
large scale equations can lead to a large variety of respo
profiles, summarized in the phase diagram shown in Fig
spanned by a two-parameter combination of entries of
~pseudo-!elastic modulus tensor. The one-peak structure
conventional~elliptic! isotropic elasticity can split into two
peaks for sufficiently anisotropic materials. This situation o
curs as soon as the shear modulusG is greater than the ratio
Ex /nx5Ez /nz of the Young modulus and the Poisson ra
~either in vertical or horizontal direction!. This corresponds
to an anisotropic material for which vertical stresses are e
ily transformed into horizontal strain~large Poisson ratios!
and vice versa but which strongly resists shear stres
However, contrarily to the prediction of stress-only hype
bolic models, these two peaks generically spread proport
ally to the height of the layer, and not as the square roo
the height for an hyperbolic medium. For the triangular n
work of springs, there is a special point, where the latt
loses its rigidity and a soft mode appears, where the sys
becomes exactly hyperbolic. It would be interesting to e
hibit other situations where these extended soft modes
cussed in Ref.@10# naturally appear; a possible candidate is
percolating network of springs at rigidity percolation.

For the anisotropic rules of force chain scattering that
have chosen, on the other hand, the directed-force netw
was always found to be in the elliptic regime. This migh
however, be an artifact of the linear approximation that
have used and where mergers of force chains are igno
Preliminary results suggest that for the full nonlinear pro
lem, a genuine elliptic to hyperbolic phase transition mig
take place when the degree of anisotropy is increased,
more work~underway! is needed to confirm this potentiall
interesting result.

Recent experiments@27# have not been able so far to dis
tinguish between a noisy hyperbolic response~where the
width of peaks scales as the square root of the height! or
anisotropic~pseudo!elastic response functions. For shear
system where force chains are preferably oriented at
with respect to the vertical, response functions show a h
zontal shift~in the lateral direction with respect to the poi
of applied force! of the maximum, consistent with the pre
ferred orientation of force chains. We found qualitati
agreement with our findings. More detailed experiments
pear to be necessary to decide on the parametersr ,t, i.e., the
possible locations in the phase diagram, Fig. 1, or put dif
ently on the elastic constants, corresponding to a partic
form of the response function, if the present~pseudo!elastic
analysis applies.

It would be interesting to extend the present results
three-dimensional situations in order to fit the results of
periments on deep sand layers, where a single-peak resp

e
d

2-16
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function was measured@16#, and, most importantly, to tes
the consistency of the effective elastic moduli obtained fr
this fit in other geometries~like the sandpile or the silo!. It
would also be very interesting to find a way to prepare
disordered granular medium in a sufficiently anisotropic st
such as to observe a two-peak response functions.
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APPENDIX A: SOME INTEGRALS FOR BIASED
LINEAR DFCN

1. Zeroth moment

First, we propose to calculate the coefficientsc1 andc2.
Using the expansion~116! the integral with respect ton1 of
the equation for the force density, one finds

l“•J52p12E dn8E dn1E dn2Fp1D ni8Ji

1
D12

2
ni8ŝ i j nj8GC~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2

5~k121!p1k3

D12

2
ŝNN . ~A1!

Please note that a contribution occurs only from terms wh
are even with respect ton8→2n8. The first coefficient is
given by

k152E dn8E dn1E dn2C~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
. ~A2!

The second coefficientk3 appears when performing a de
composition of the tensor

2E dn8E dn1E dn2ni8nj8C~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
5k3

0d i j 1k3NiNj .

~A3!
03130
a
e

a
e

d

h

h

The coefficientk3
0 is irrelevant becaused i j ŝ i j 50, where

ŝ i j 5s i j 2d i j p. Then the coefficientk3 is given by

k352E dn8E dn1E dn2@2~n8•N!221#C~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
. ~A4!

One finally obtains

c15k12
D12

2
k3 , c25

D12

2
k3 . ~A5!

Explicit expressions for the constantsk1 , k3 are given in
Sec. B 4 which finally will have to be evaluated numerical

2. First moment

Next, let us derive the equation of mechanical equilibriu
~114!. Taking the first moment of the force density equati
without an external force gives

l

D
] js i j 52Ji12E dn8E dn1E dn2n1,iF~n8,r !

3C~n8→n1 ,n2uN!
1

cosu12~sinu1 /sinu2!cosu2
.

~A6!

The second term contains the integral

E dn1E dn2n1,iC~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
5ani8 . ~A7!

Symmetrizing the integrand with respect to the indices 1 a
2 gives a51/2. This result is independent of the speci
form for the scattering cross sectionC(n8→n1 ,n2uN). The
remaining integral with respect ton8 yields Ji canceling the
first term2Ji above.

3. Second moment

Finally, we calculate the coefficientsBm in the third of the
continuum equations, Eq.~115!. Let us consider the secon
moment by multiplying the force density equation byn1,in1,j
and integrating with respect ton1. One obtains the following
equation:

lDG i jkl ]kJl52
1

D
s i j 1E dn8F~n8,r !I i j ~n8,N!,

~A8!

where
2-17
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I i j ~n8,N!52E dn1E dn2n1,in1,jC~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
~A9!

and

G i jkl 5
1

D~D12!
~d i j dkl1d ikd j l 1d i l d jk!. ~A10!

The tensorI i j may be decomposed as follows:

I i j ~n8,N!5K0d i j 1K1ni8nj81K2~ni8Nj1nj8Ni !.
~A11!

The coefficientsK0 , K1, and K2 are all functions of the
argumentn8•N which will be suppressed in the following
As the tensorI i j (n8,N) should be invariant with respect t
the operationN→2N because the scattering cross sect
C(n8→n1 ,n2uN) is, the functionsK0 andK1 are even and
K2 is odd under this ‘‘parity’’ change. They are to be dete
mined by multiplyingI i j as follows:
03130
n

-

I 05I i i 5K0D1K112K2~n8•N!, ~A12!

I 15NiI i j Nj5K01K1~n8•N!212K2~n8•N!, ~A13!

I 25ni8I i j nj85K01K112K2~n8•N!. ~A14!

The variablesI 0 , I 1, and I 2 are likewise functions of the
argumentn8•N which is suppressed henceforth. In the fo
lowing we considerD52. The system of equations ma
then be written in matrix form

~ I 0 ,I 1 ,I 2!T5A~K0 ,K1 ,K2!T, ~A15!

with

A5S 2 1 2cosa

1 cos2a 2 cosa

1 1 2cosa
D , ~A16!

where cosa5(n8•N). We eventually want the functionsKm
as a function of the integralsI m , m50,1,2. So we need the
inverse matrix
A215S 1 0 21

0 1/sin2a 1/sin2a

21/~2 cosa! 1/~2 cosa sin2a! 2cos~2a!/~2 cosa sin2a!
D . ~A17!
ions
We find

K05I 02I 2 , ~A18!

K15
1

sin2a
~ I 22I 1!, ~A19!

K25
1

2 cosa S 2I 01
1

sin2a
@ I 12cos~2a!I 2# D . ~A20!

Before writing down the integralsI m , let us introduce the
vector

n'5
N2~n•N!n

A12~n•N!2
. ~A21!

Furthermore, let us denote the integrals
S i 0

i 1

i 2

D ~a!52E dn1E dn2S ~n1•n8!2

~n1•n'8 !2

~n1•n'8 !~n1•n8!
D

3C~n8→n1 ,n2uN!

3
1

cosu12~sinu1 /sinu2!cosu2
. ~A22!

Then, we find for the functionsKm,

K05 i 1 , ~A23!

K152 i 11 i 022sgn~sina!cota i 2 , ~A24!

K25sgn~sina!
i 2

sina
. ~A25!

The transformation fromI 0 ,I 1 ,I 2 to i 0 ,i 1 ,i 2 is primarily for
technical reasons as in the scattering function the direct
n1 andn2 are parametrized with respect ton8. We may now
proceed to perform the integral on the rhs of Eq.~A8!
2-18
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E dn8F~n8,r !I i j ~n8,N!5E dn8S p1DJknk81
D12

2
ŝklnk8nl8D I i j ~n8,N!

5pS d i j E dn8K01E dn8K1ni8nj81E dn8K2~ni8Nj1nj8Ni ! D
1DJkS d i j E dn8K0nk81E dn8K1ni8nj8nk8

1E dn8K2~ni8Nj1nj8Ni !nk8 D1
D12

2
ŝklS d i j E dn8K0nk8nl81E dn8K1ni8nj8nk8nl8

1E dn8K2~ni8Nj1nj8Ni !nk8nl8 D . ~A26!
l b
ig
it
a

o

ffi-
The integrals which are multiplied byJk give no contribution
because due to their tensorial properties they should al
linear in N which means that they are uneven under s
changeN. On the other hand, the integrands are even w
respect to this operation, which implies that the integrals
zero.

We now further simplify the integrals with respect ton8

multiplied by p and ŝkl using decomposition according t
Cartesian tensors. The integrals followingp are denoted as
follows:

E dn8K05K̄0 , ~A27!

E dn8K1ni8nj85K̄1,ad i j 1K̄1,bNiNj , ~A28!

E dn8K2~ni8Nj1nj8Ni !5K̄2,ad i j 1K̄2,bNiNj . ~A29!

The constants are given by

K̄1,a5E daK1sin2a, ~A30!

K̄1,b5E daK1cos~2a!, ~A31!

K̄2,a50, ~A32!

K̄2,b52E daK2cosa. ~A33!

The angular integrations above~and all the ones following
below! are understood to be normalized by factors 1/(2p).
The integrals followingŝgd are the following:

E dn8K0ni8nj85K̄0,ad i j 1K̄0,bNiNj , ~A34!
03130
e
n
h
re

Mi jkl 5E dn8K1ni8nj8nk8nl8

5K̃1~d i j dkl1d ikd j l 1d i l d jk!1K̃2~NiNjdkl

1permutation!1K̃3NiNjNkNl , ~A35!

and

E dn8K2~ni8Nj1nj8Ni !nk8nl8

5K̄28~2NiNjdkl1NiNkd j l 1NjNkd i l 1NiNld jk

1NjNld ik!12K̄29NiNjNkNl . ~A36!

Let us turn to the first of these three integrals. The coe
cients are given by the following integrals:

K̄0,a5E daK0sin2a, ~A37!

K̄0,b5E daK0cos~2a!. ~A38!

The second integral~A35! giving rise to the coefficientsK̃ i is
treated by performing the following contractions:

M15Mii j j 5E dn8K1 , ~A39!

M25Miikl NkNl5E daK1cos2a, ~A40!
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M35Mi jkl NiNjNkNl5E daK1cos4a. ~A41!

In matrix notation, the system of equations we have to inv
is the following:

~M1 ,M2 ,M3!T5B~K̃1 ,K̃2 ,K̃3!T, ~A42!

with

B5S D~D12! 2D14 1

D12 D15 1

3 6 1
D . ~A43!

Then, forD52 one finally obtains for the coefficients

K̃15E daK1S 1

3
2

2

3
cos2a1

1

3
cos4a D , ~A44!

K̃25E daK1S 2
1

3
1

5

3
cos2a2

4

3
cos4a D , ~A45!

K̃35E daK1~128 cos2a18 cos4a!. ~A46!

Finally, the coefficients of the third integral~A36! read as

K̄285E daK2 cosa sin2a, ~A47!

K̄295E daK2 cosa~124 sin2a!. ~A48!

Next, one collects all coefficients in front of the Cartesi
tensors on the rhs of the second moment~A8!:

lDG i jkl ¹kJl52
1

D
s i j 1ŝ i j ~D12!K̃11d i j ~a0p1a1ŝNN!

1NiNj~a2p1a3ŝNN!1a4~Nj ŝ ikNk

1Ni ŝ jkNk!, ~A49!

where the coefficientsam are given as follows:

a05K̄01K̄1,a , ~A50!

a15
D12

2
~K̄0,b1K̃2!, ~A51!

a25K̄1,b1K̄2,b , ~A52!

a35
D12

2
~K̃312K̄29!, ~A53!

a45~D12!~K̃21K̄28!. ~A54!

When reducing the integrals in terms of the integralsi m , one
obtains
03130
rt

a05E da@ i 0 sin2a1 i 1cos2a2 i 2 sgn~sina!sin~2a!#,

~A55!

a15
D12

2 S E da i 2 sgn~sina!cos~2a!1K̃2D ,

~A56!

a25E da@~ i 02 i 1!cos~2a!12i 2 sgn~sina!sin~2a!#,

~A57!

a35
D12

2 E da$~ i 02 i 1!@122 sin2~2a!#

14i 2 sgn~sina!sin~2a!cos~2a!%, ~A58!

a45~D12!F K̃21
1

2E da i 2 sgn~sina!sin~2a!G ,
~A59!

and

K̃15E da@~ i 02 i 1!sina22i 2 sgn~sina!cosa#

3
sina

3
~2114 cos2a!, ~A60!

where

K̃25E da@~ i 02 i 1!sina22i 2 sgn~sina!cosa#

3
sina

3
~2114 cos2a!. ~A61!

Using the equation for the zeroth moment~113!, we can
eliminatep and we obtain the coefficientsB0 throughB5,

B052
1

D
1~D12!K̃1 , ~A62!

B15
1

~c121!
@a02a12~D12!K̃1#, ~A63!

B25a11
c2

c121
@2a01a11~D12!K̃1#, ~A64!

B35
1

c121
~a22a322a4!, ~A65!

B45a31
c2

c121
~2a21a312a4!, ~A66!

B55a4 . ~A67!

Inserting forc1 , c2 calculated in Sec. B 1, and forK̃1 , K̃2,
and a0 througha4 given above, the coefficientsBm are en-
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TABLE I. The microscopic constantsc0 , c1, andBm , m50, . . . ,5, and theentriesa,b,c,c8,d of the
matrix L† calculated from the microscopic model for scattering for different bias intensitiesp, where the
maximum scattering angle isumax5p/220.01.

p 0 1 2 4 6 8

c121 3.23966 5.98386 6.91022 7.66596 8.00018 8.19206
c2 ,1029 22.73543 23.6542 24.39914 24.72539 24.91083
B0 22.02254 23.07827 23.49472 23.87001 24.04823 24.15404
B1 1.12431 1.05801 1.03896 1.02225 1.01434 1.00966
B2 ,1029 0.478234 0.688084 0.897999 1.00432 1.06907
B3 ,1029 20.0871608 20.0664648 20.0348425 20.0166413 20.00515556
B4 ,1029 20.248513 20.968517 21.88383 22.39835 22.72395
B5 ,1029 1.05321 1.64421 2.26475 2.58598 2.7831
a 0.185067 0.250961 0.374958 0.594681 0.751558 0.862493
b 0.185067 0.297586 0.45714 0.727492 0.916382 1.04853
c 0.432281 0.308721 0.315767 0.368355 0.416152 0.452717
c8 0.432281 0.971317 1.48443 2.25966 2.76618 3.10848
d 20.247214 20.246906 20.270197 20.311477 20.341938 20.364713
r 1.0 0.914026 0.438156 20.042155 20.260547 20.383077
t 1.0 0.843324 0.820227 0.81744 0.820136 0.822574
in

fo
in
le

-

tirely determined in terms of integrals over the scatter
function or in terms of integrals over the functionsi m which
have to be evaluated numerically. Explicit expressions
the functionsi m for a specific scattering model are given
Sec. B 4 and have been used to yield the following Tab
I–IV.

4. The scattering model

We give now the explicit form for the normalization fac
tor Cp of the microscopic scattering model, Eq.~130!.
03130
g

r

s

Choosing the angle betweenn8 and N as a one finds the
following relation to determineCp :

15E dn1E dn2C~n8→n1 ,n2uN!

5Cp2E
0

umax du1

umax
E

2umax

2u1 du2

~umax2u1!

3@cos2p~u12a!1cos2p~u11a!#. ~A68!

One finds
TABLE II. The microscopic constantsc0 , c1, andBm , m50, . . . ,5, and theentriesa,b,c,c8,d of the
matrix L† calculated from the microscopic model for scattering for different bias intensitiesp, where the
maximum scattering angle isumax5p/220.05.

p 0 1 2 4 6 8

c121 1.90263 3.3809 3.90443 4.36006 4.57993 4.7162
c2 ,1029 21.4544 21.95725 22.38459 22.58451 22.70519
B0 21.34045 21.97435 22.22524 22.45813 22.57493 22.64818
B1 1.20453 1.12804 1.10869 1.09218 1.08417 1.0792
B2 ,1029 0.302278 0.418453 0.53197 0.590517 0.627352
B3 ,1029 20.0881382 20.0775209 20.0563067 20.0438889 20.0353852
B4 ,1029 20.158535 20.486841 20.90403 21.14793 21.30717
B5 ,1029 0.626319 0.940457 1.26503 1.43651 1.54521
a 0.339085 0.40072 0.51712 0.705856 0.828683 0.915888
b 0.339085 0.501589 0.681264 0.952482 1.1194 1.23675
c 0.712094 0.521519 0.513996 0.548739 0.580671 0.606106
c8 0.712094 1.36669 1.89275 2.61839 3.04756 3.3414
d 20.373009 20.370911 20.38917 20.419075 20.439207 20.453324
r 1.0 0.868488 0.57427 0.252696 0.0920036 20.00397738
t 1.0 0.7989 0.75906 0.74107 0.740293 0.740561
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TABLE III. The microscopic constantsc0 , c1, andBm , m50, . . . ,5, and theentriesa,b,c,c8,d of the
matrix L† calculated from the microscopic model for scattering for different bias intensitiesp, where the
maximum scattering angle isumax5p/4.

p 0 1 2 4 6 8

c121 0.154395 0.224047 0.271432 0.32539 0.355728 0.3755
c2 ,1029 20.0528349 20.0821605 20.113501 20.130596 20.14166
B0 20.199655 20.267729 20.311707 0.360256 20.386527 20.403233
B1 1.79315 1.70859 1.69527 1.68785 1.68312 1.67972
B2 ,1029 0.0282278 0.0350513 0.0396921 0.0413126 0.042102
B3 ,1029 20.0272506 20.0938402 20.16046 20.192802 20.211874
B4 ,1029 20.0482741 20.0321304 0.000361819 0.0226003 0.038231
B5 ,1029 0.0590451 0.0753626 0.0858452 0.0893064 0.090893
a 5.22475 4.46981 3.99399 3.55095 3.33471 3.20677
b 5.22475 5.48863 5.38669 5.23452 5.14104 5.08701
c 7.72907 6.02669 5.24234 4.56791 4.25716 4.07678
c8 7.72907 8.43526 8.55002 8.60126 8.61323 8.63027
d 22.50432 22.39596 22.11555 21.82208 21.68225 21.60082
r 1.0 0.682741 0.765062 0.912647 1.00577 1.06836
t 1.0 0.814376 0.741456 0.678371 0.648644 0.63038
o

a

ood

c
IV.
Cp~a!5
1

4 F 1

22p S 2p

p D 1
2

umax2
2p (

k50

p21 S 2p

k D
3

sin@~2p22k!umax#cos@~2p22k!a#

@2~p2k!# G21

.

~A69!

We have mentioned above that all constants of the c
tinuum equations depend on the parametersk1 , k3, and the
integrals of the functionsi m(a) for m50,1,2. Using the
model for the scattering cross section introduced in the m
text, they read as follows:

S k1

k3
D 52E

2p

p da

~2p!
Cp~a!S 1

cos~2a!
D

3E
0

umax du1

umax
E

2umax

2u1 du2

~umax2u1!

3
@cos2p~u12a!1cos2p~u11a!#

~cosu1sinu22sinu1cosu2!
~sinu22sinu1!

~A70!

and

S i 0

i 1

i 2

D ~a!52Cp~a!E
0

umax du1

umax
E

2umax

2u1 du2

~umax2u1!

3
@cos2p~u12a!6cos2p~u11a!#

~cosu1sinu22sinu1cosu2!

3S sinu2cos2u12sinu1cos2u2

sinu1sinu2~sinu12sinu2!

sinu1sinu2~cosu12cosu2!
D . ~A71!
03130
n-

in

The choice of signs indicated on the rhs is to be underst
as follows. The1 sign is used fori 0 , i 1, and the2 sign for
i 2. Using these expression all constantsc1 , c2, and B0
throughB5 can be determined.

5. Numerical values of the different coefficients

Microscopic constantsc0, c1, Bm, and the entries
a,b,c,c8,d of the matrixL† calculated from the microscopi
model for various scattering angles are given in Tables I–

APPENDIX B: RESPONSE FUNCTIONS

1. Region I

The s i j can be expressed as

szz5E
0

1`

dq@a3* e2 iqx1a4eiqx#eiX4qz

1E
0

1`

dq@a4* e2 iqx1a3eiqx#eiX3qz, ~B1!

sxx5E
0

1`

dq@~X3
2a3!* e2 iqx1X4

2a4eiqx#eiX4qz

1E
0

1`

dq@~X4
2a4!* e2 iqx1X3

2a3eiqx#eiX3qz,

~B2!

sxz52E
0

1`

dq@~X3a3!* e2 iqx1X4a4eiqx#eiX4qz

2E
0

1`

dq@~X4a4!* e2 iqx1X3a3eiqx#eiX3qz.

~B3!
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TABLE IV. The microscopic constantsc0 , c1, andBm , m50, . . . ,5, and theentriesa,b,c,c8,d of the
matrix L† calculated from the microscopic model for scattering for different bias intensitiesp, where the
maximum scattering angle isumax5p/8.

p 0 1 2 4 6 8

c121 0.0335067 0.0428648 0.0524673 0.0641093 0.0705982 0.07475
c2 ,1029 20.00668779 20.0121806 20.018075 20.020776 20.0221954
B0 20.0485058 20.0601859 20.0709311 20.0839805 20.0912928 20.0959171
B1 1.94764 1.89848 1.86723 1.86271 1.86831 1.87199
B2 ,1029 0.00497716 0.00718661 0.00839984 0.00836975 0.008060
B3 ,1029 0.0189319 20.0293591 20.104785 20.149741 20.177526
B4 ,1029 20.0118706 20.0131302 20.00748694 20.000990488 0.00438443
B5 ,1029 0.010374 0.0158534 0.0190278 0.0189925 0.01822
a 24.6907 22.0583 19.3127 16.6004 15.1812 14.279
b 24.6907 25.1971 24.085 22.3923 21.0886 20.0854
c 34.9988 29.4735 25.2402 21.4431 19.66 18.5982
c8 34.9988 35.9891 35.1548 33.5005 31.975 30.7187
d 210.308 210.0378 29.07808 27.69791 26.91559 26.43566
r 1.0 0.697308 0.677047 0.784092 0.890948 0.97336
t 1.0 0.87543 0.801857 0.741342 0.719877 0.710911
-
The top conditions~32! and~33! allow to calculate the coef
ficientsa3 anda4. They read

a35
1

X42X3

F0

2p
~X4cosu01sinu0!, ~B4!

a45
1

X32X4

F0

2p
~X3cosu01sinu0!. ~B5!

To perform the integrals overq, it is useful to define the two
following integrals:

I 6[E
0

1`

dq cos~qx!e2aqz6 ibqz5
az7 ibz

~az7 ibz!21x2
,

~B6!

J6[E
0

1`

dq sin~qx!e2aqz6 ibqz5
x

~az7 ibz!21x2
.

~B7!

We then get

szz5
F0

2p

4

2b Fbcosu0

I 11I 2

2
1acosu0

I 12I 2

2i

1sinu0

J12J2

2i G , ~B8!

sxx5
F0

2p

4

2b Fb~a21b2!cosu0

I 11I 2

2
2a~a21b2!

3cosu0

I 12I 2

2i
2~a22b2!sinu0

J12J2

2i

12ab sinu0

J11J2

2 G , ~B9!
03130
sxz5
F0

2p

4

2b F ~a21b2!cosu0

J12J2

2i

1b sinu0

I 11I 2

2
2a sinu0

I 12I 2

2i G . ~B10!

2. Region II

The s i j can be expressed as

szz5E
0

1`

dq@a4* e2 iqx1a4eiqx#eiX4qz

1E
0

1`

dq@a3* e2 iqx1a3eiqx#eiX3qz, ~B11!

sxx5E
0

1`

dq@~X4
2a4!* e2 iqx1X4

2a4eiqx#eiX4qz

1E
0

1`

dq@~X3
2a3!* e2 iqx1X3

2a3eiqx#eiX3qz,

~B12!

sxz52E
0

1`

dq@~X4a4!* e2 iqx1X4a4eiqx#eiX4qz

2E
0

1`

dq@~X3a3!* e2 iqx1X3a3eiqx#eiX3qz.

~B13!

The top conditions~32! and ~33! give again

a35
1

X42X3

F0

2p
~X4cosu01sinu0!, ~B14!
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a45
1

X32X4

F0

2p
~X3cosu01sinu0!. ~B15!

In this case, the useful integrals are

I ~a![E
0

1`

dq cos~qx!e2aqz5
az

~az!21x2
, ~B16!

J~a![E
0

1`

dq sin~qx!e2aqz5
x

~az!21x2
. ~B17!

We then get
ce

,

Ph

E
S.

hy

ys

J.

nd
,

03130
szz5
F0

2p

2

a22a1
@a2cosu0I ~a1!1sinu0J~a1!

2a1cosu0I ~a2!2sinu0J~a2!#, ~B18!

sxx5
F0

2p

2

a22a1
@2a1

2a2cosu0I ~a1!2a1
2sinu0J~a1!

1a2
2a1cosu0I ~a2!1a2

2sinu0J~a2!#, ~B19!

sxz5
F0

2p

2

a22a1
@a1a2cosu0J~a1!2a1sinu0I ~a1!

2a2a1cosu0J~a2!1a2sinu0I ~a2!#. ~B20!
da
4.
s.

d

.
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