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Anisotropy in granular media: Classical elasticity and directed-force chain network
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A general approach is presented for understanding the stress response function in anisotropic granular layers
in two dimensions. The formalism accommodates both classical anisotropic elasticity theory and linear theories
of anisotropic directed-force chain networks. Perhaps surprisingly, two-peak response functions can occur even
for classical, anisotropic elastic materials, such as triangular networks of springs with different stiffnesses. In
such cases, the peak widths grow linearly with the height of the layer, contrary to the diffusive spreading found
in “stress-only” hyperbolic models. In principle, directed-force chain networks can exhibit the two-peak,
diffusively spreading response function of hyperbolic models, but all models in a particular class studied here
are found to be in the elliptic regime.
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[. INTRODUCTION neous linear closure relations is compatible with the rota-
tional symmetry. The idea of “grains{in the metallurgical
The stress response of an assembly of hard, cohesionlessnsg and packing defects must be introduced to restore the
grains has been a subject of debfdte 4]. The dividing line  large scale symmetry.
has been mostly between traditional approaches based on In order to understand stress distribution on a more fun-
elasticity or elastoplasticity theory on one hand, and “stressdamental level, we have introduced the mesoscopic concept
only” models on the other which make no reference to aof the directed-force chain netwo(®FCN) [13,14], which
local deformation field but posihistory-dependentclosure  is motivated by the experimental evidence for filamentary
relations between components of the stress tensor. Th@rce chains in a wide variety of systerfis]. The “double
former leads to elliptic partial differential equations for the y» model has been developed to describe such networks
Stresses, for Wh|Ch boundary Conditions must be imposegased on Simp|e rules for the Sp“tt'ng and merging of

everywhere on the boundary. In contrast, the latter approackyraight force chains. This model leads to a nonlinear Boltz-

often leads to hyperbolic equatiof3,4]. The wavelike be- . . ~ .
havior of their solutions has been at the origin of a propose&nann equation for the probabili§y(f,n,r) of finding a force

physical mechanism called stress propagation through thehain at the spatial poimtwith intensityf in the directionn.
bulk granular material. In an infinite slab geometry, it only  In the first papef13], chain mergingwhich produces the
requires the specification of boundary conditions on the'onlinear terms in the Boltzmann equatiomas neglected.
“top” surface. A family of (linean closure relations have An isotropic splitting rule was assumed, corresponding to
been shown to account for the pressure dip underneath tiférongly disordered isotropic granular packings. A pseu-
apex of a Sandp”e and stresses in S||[6$4-] Alternative doelastic theory for the stress tensor was derived in which
explanations based on elastoplasticity are found in fgaf. ~ the role of the displacement field is played by a vector field
The phenomenological stress-only closure relations fold(r)=(nf) that represents the coarse-grained or ensemble
low from plausible symmetry arguments, and can be seen asveraged force chain direction. A relation betwegdh and
the coarse-grained version of local probabilistic rules forthe stress tensor exists that is formally equivalent to an iso-
stress transfef6]. However, these relations lack a detailed tropic stress-strain relation. The resulting elliptic equations
microscopic derivation that would allow one to understandyield a response function with a uniqgeseudoelastjcpeak,
both their range of validity and to compute the phenomenoas observed experimentally in strongly disordered packings
logical parameters from the statistical properties of the packf16,17. Further study showed, however, that the nonlinear
ing, except in the case of frictionless grains. In fact, a systenterms in the Boltzmann equation contain essential physics
of frictionless polydisperse spheres is shown to be isostatiand cannot be neglect¢di4]. In fact, for an exactly solvable
[7-1Q, i.e., the number of unknown forces is equal to themodel with six discrete directions for force chains, it was
number of equations for mechanical equilibrium. If an isos-found that the elliptic(pseudoelasticbehavior of the re-
tatic system is sufficiently anisotropic, a linear closure rela-sponse function is limited to small depths, and that at suffi-
tion between stresses can be derii/Ell. Further attempts to ciently large depths a crossover occurs to a hyperbolic re-
obtain the missing equation for stresses from a microscopisponse, i.e., two Gaussian peaks that propagate away and
approach for different packings are presentefilinl12, but  broaden diffusively. Whether this behavior is specific to the
these are still somewhat inconclusive. In particular, in themodel with six discrete directions is a subject of current
case of a completely isotropic packing, none of the homogestudy, and the elliptic or hyperbolic nature of the linearized
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response around the full solution of the nonlinear Boltzmann  1l. ANISOTROPIC ELASTICITY AND SUMMARY
equation is an open question. OF OUR RESULTS

Following a different route, Goldenberg and Goldhirsch
[18] have recently noted that a two-peak response function
can be found in classical anisotropic ball-and-spring models.
Gay and da Silveir@19] have furthermore given some argu-

ments for the relevance of anisotropic elasticity for the Iargec . T .
nd a generally anisotropic “pseudoelasticity” theory, that

scale description of granular assemblies of Compressibla ears within a linearized treatment of directed-force chain
grains that can locally rotate. The two-peak nature of the PP

S s . networks(see Sec. Y. The large scale equations that can be
response function is therefore not in itself a signature of hy'derived in these two approaches are formally identical, al-
perbolicity, but may occur in elliptic systems that are suffi- ’

. ; . ! . though the “pseudostrain” has a geometric meaning different
ciently anisotropic. The unambiguous signature of hyper

. L : . - Trom the usual strain tensor. For simplicity, we will restrict
bolic response lies in the scaling of the peak widths withy,o discussion to two-dimensional systems.

depth, which is linear in generic elliptic systems but diffusive  The most general linear relation between the stress tensor

(proportional to the square root of depiin generic hyper- and a symmetric tensor formed from the gradients of a
bolic systems. In the linear pseudoelasticity theories diSyector fieldu is

cussed below, the diffusive spreading in hyperbolic systems
is not captured; the peaks appeardafunctions that do not Tij = Njjki Ukg s 1)
spread at all. Deviations from elasticity on small scales and

their possible relation with granular media were also disyyhere oi; denotes a component of the stress tensgr,
cussed in Ref{20]. =3(d;,u;+d;u;), and summation over repeated indices is im-
The aim of this paper is to give a unified account of theplied. In the classical linear theory of elasticity, the veatpr
shape of the response function for anisotropic systems dés the displacement field describing the physical deformation
scribed either by standard elasticity theory or the pseudoelasf a continuous medium. For usual elastic bodies, the anti-
tic theory that emerges from an approximate linear treatmergymmetric combinatiod;u; — d;u; corresponds to a local ro-
of directed-force networks. Though there are open questiontion of the material, which is not allowed here. For granu-
concerning the self-consistency of the latter, there do appedar materials, on the other hand, grains might locally rotate
to be some contexts in which the equations of the pseudue to the presence of friction. This extension which sug-
doelasticity theory hold, and they may be especially relevangests a continuum description in terms of Cosserat elasticity
for systems of intermediate dep(l‘arge Compared to the was recently discussed in Réﬂ.g] The absence of internal
disorder length scale but not much larger than the persistend@raues requires that the stress tensor is also symmetric. The
length of force chains coefficientsh;j are material constants and form the elastic
Very recently, the response functions of two-dimensionafnodulus tensor. The indicésj k| are equal to,z, where
(2D) granular layers subjected to shear have been determind@ latér purposescis to be considered as the horizontal
experimentally{27]. Under shear, an anisotropic texture ap-coordinate and a vertical coordinate pointing downward.
pears and force chains are preferably oriented along an angle Symm.etry of both the S.t“?ss and_the strain tensor |m_ply a
of 45°. Within the (pseudgelasticity framework presented 'per.mutat|on symmetry within the first and second pair of
below, this provides motivation for studying materials char-"Mdices forkijq , i.e.,
acterized by a selected global directidn
The paper is organized as follows. In Sec. Il, a general Nijki = Njiki = Nijik = Njir - i)
mathematical framework for calculating stress response
functions in anisotropic materials. The main results of theMaterials whose behavior is modeled only in terms of @&g.
paper are then summarized in a “phase diagram” indicatingvithout any reference to a free energy functional are charac-
where “one-peak” or “two-peak” response functions can ap- terized by an elastic modulus tensor that need not have any
pear in parameter space. In Sec. lll, we compute the analytigymmetries other than E). They are called “hypoelastic”
form of the response function for the various phases an@vhenuj; corresponds to a real strain ten$@e]. In hyper-
show a number of examples for the variety of shapes that arelastic materials, on the other hand, the existence of qua-
possible, including a brief comment on relation to experi-dratic free energy functional,
mental work. In Sec. IV, we show how the formalism applies
to the example of a triangular ball-and-spring network, indi- 1
cating how spring stiffnesses must be chosen to access all F= E)\ijkluijuklu 3
possible regions of the general parameter space. In Sec. V, a
linear anisotropic pseudoelastic theory is derived from an . . )
anisotropic linear directed-force chain network model and ild!Ves an a(_:ldltlo_na! symmetry under exchange of the first and
is shown that this class of models always lies in the ellipticSecond pair of indices, i.e.,
regime. A conclusion is given in Sec. VI. Algebraic details of
several calculations are presented in the Appendixes. Nijit = N - (4)

A. General equations for 2D systems
with arbitrary anisotropy

In the following, we present a general framework that
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In the “p_seudoelgsticity” theory, the vector wiI_I be a novel Bay Bast2B3  2Bast Byt Bip , Bigt2Bs
geometric quantitysee beloy, and the resulting tensas; B. B X+ B S X
will be called a pseudoelastic strain tensor. This tensor is still -+ 1 1 1
symmetric, as explained in Sec. V, but the above additional +X4=0. (12
symmetry is, in generahot present.
We wish to construct general solutions of the equilibriumDepending on whether the roo¥are real or complex, the
equations response function will be qualitatively different.
(a) Complex roots, corresponding to elliptic equations for
di0i;=0. (5)  the stress, appear within the classical theory of anisotropic
elasticity. The fact that the roots are complex follows from
In order to close the problem for the stress tensor, a supplehe positivity of the free energj23].
mentary condition is needed which is the condition of com- (b) Purely real roots can occur in the context of directed-
patibility, force chain networks considered below. The existence of at
least one purely real root of the dispersion relation classifies
92Uyt 92Uy ,— 2043y =0, (6)  the problem at hand as hyperbofi3].

resulting simply from the fact that the tensgy is built with
the derivatives of a vectar; . This relation does not depend

on a specific interpretation of the tensor in terms of real L€t us consider the case of uniaxial anisotropy and choose
deformations. x and z to be along the principal axes of anisotropy. Then

The entries of the stress and strain tensors can be arrang@8Y Mij With even numbers of equal indices is nonzero.
in vector form, i.e., S=(0y,0,,,0.,)" and U Due to the symmetr{2) of \;; , this leaves one, in general,

= (Uyy s Uy, UXZ)T giving a matrix representation of the elas- with five different constants. The matrix takes the form
tic modulus tensor,

B. The case of uniaxial symmetry

a c¢c O
=AU, (7) A= c b 0], (13
0 0d
where
We denote it with a dagger to indicate that it corresponds to
Mxxxx  Mxxzz 2Nxxxz a material with a vertical uniaxial symmetry. An alternative
A=| Nooxx Nyzzz 2Nyoxs| . (8) parametrization of\;, standard in elasticity theory, is
)\XZXX )\XZZZ 2)\XZXZ 1 EX VZEX O
The factors of 2 are due to the symmetry under exchange of A=1- nwE, E; 0 , (19
the last two indices of;, anduy . Now, we want to ex- 2\ o 0 (1-vv,)G
press the compatibility relation in terms of the stress tensor,
so we need to expreds in terms of3, i.e., whereE, , and G are the Young and shear moduli, respec-
tively, andv, , the Poisson ratios. Note that the present form
U=B%, (9 includes a linear elasticity theory without a free energy func-

. . tional. The classical theory is recovered with the extra sym-
whereB:(Bij):Afl. Then Eq.(6) for an anisotropic me- metryc’=c. In this caseE,, E,, v,, andv, are not inde-

dium is rewritten as follows: pendent, satisfying the relatio&,/E,=v,/v,. Together
with G, we are thus left with four independent constants.
Bljﬁizj+sz0f2j—283jax<922j=0. (10 In classical elasticity theory for a uniaxial system, the

stress-strain relation is derivable from an energy density of

For an isotropic mediumB;;=By,, B,;=Bi5, B3j=B;3  the form
=0, fori=1,2, thus the equation reduces &§o,,+ 0,
=0.

In the following, we will look for solutions of the form
;<€ *9z n this case, Eq(10), together with the condi-
tions of mechanical equilibriun(b), can be rewritten in ma-  The material described is stable under deformations if and
trix form, only if F is positive definite for any strain, which requires

1
F= E[au)z(x+ buZ,+ 2cuyU,,+2duZ,]. (15)

A(g,0)2=0. (11) a>0, b>0, d>0, and ab—c?>0. (16
A nontrivial solution occurs if d€tA(q,w))=0, which leads  Or, equivalently,
to a certairdispersion relatiorof the formw(q) = Xq, where
X obeys the following equation: v,v,<1l, E>0, E,>0, and G>0. (17
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An elastic material that is permitted to reversibly deform

must obey these constraints, but they do not apply to mate
rials for which there is no well-defined free energy quadratic
in the strains. We speak of such materials as being describe

by coefficients that lie outside the “classical stability” range.
The compatibility conditior(6) expressed in terms of the
stress tensor reads

etA

2 2 2 2 _
DS 0 y— CI50,,— C' g0yt ad50,,— 2? 0y 0,04,=0.

(18)

Combining this relation with the two equilibrium conditions
of Eq. (5),
3,077 9x0x,=0, (19

(20

0207+ x0Ty =0,
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we obtain, for any one of the components of the stress tensor,

(03 +tdg+2rd592) a3 =0, (21)
where the coefficientsandr are given by
2 E
b E,
b ' 1d +c’
_a cc E(C C)_lE 2 v, ”
= bd =286 E g/ @2

Expanding the stresses in Fourier modes, it is easy to see that

the solutions of the Eq$19)—(21) are of the form

+w . .
Uzz:f dqz ak(q)equ+lxquy (23
— k
+o0 o
0y7=Cxz— J’iw dqzk: ak(Q)xkequﬂxqu, (24
+o ) )
Oyx= Cyxt f_ dQEk ak(Q)Xﬁequ+|quzy (25

whereC,, andC,, are constants. From E(21), we see that
the X, are the roots of the following quartic equation:

X4+2rX?+t=0, (26)
a special case of Eq12). There are four solutions
X==-r=(rZ-t)2 (27

Hence the index runs from 1 to 4. The four functions
a,(q) and the constant§,, andC,, must be determined by

FIG. 1. (r,t) phase diagram characterizing the qualitative nature
of the stress profiles. The shaded region corresponds to hyperbolic
and “mixed” equations for stresses, whereas the unshaded region
allows for elliptic equations. The hyperbolic region is bounded
above by the line=r2, separating it from the elliptic region. In the
elliptic region, a double-peak stress profile is found in the whole
regionr <0. The solid and dashed straight lines are the trajectories
for the triangular spring network studied in Sec. 1V, for horizontal
and vertical orientation of one of the springs, respectively. The sym-
bols correspond to the solutions of the anisotropic linear DFCN
model for various values of the anisotropic scattering paranmeter
see Sec. V.

C. Main results of this paper

We show in Fig. 1 the various “phases” in thet plane
corresponding to different shapes of the response function, as
obtained from the calculation presented in Sec. Il below.

The linet=r?, for r<0, separates the hyperbolic and the
elliptic regions. Fort>r? (region ), the above root¥, are
complex and we write

X,=—X,=p—ia, (28)

X2=—X3=—,8—ia, (29)
where o and B are positive real numbers. Wher<r?,
r>0 (region ll), one the other hand, the rootg are purely
imaginary and one has

X1==X4=—lay, (30

XZZ_X3:_i(12, (31)
where«, and «, are positive real numbers.

Note that the isotropic limit corresponds to the paint
=1,t=1. As we show in detail in Sec. lll, the elliptic region

the boundary conditions, as shown in Sec. Ill and Appen<contains a subregion<0, t>r2, where the response func-

dix B.
We see that only two combinations,andt, of the five

tion has a two-peak structure with peak widths growing lin-
early with depth. As one approaches the limer?, the two

elastic constants will determine the structure of the responsgeaks become narrower and narrower, finally becoming two

function in anisotropic materials.

S-function peaks exactly on the transition line. Below the
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transition, there is a hyperbolic reginiegion Il in Fig. 1), F
where the response consists of faifunction peaks.

The parameter range<O, labeled “mixed” in Fig. 1,
gives rise to a third type of behavior of the response function
due to the fact that there are two real roots and two imagi- O
nary roots. It may only appear in the nonstable pseudoelastic \ X
case, and gives superposition of a hyperbolic tvgeak \
response function and a single-peak classically elastic re- \
sponse function. For the particular model for the DFCN dis- e \
cussed below, the rangec0 does not occur. Hence, this case Z 0
is not pursued any further here.

We discuss below some particular trajectories in itite

plane(see Secs. IV and V One corresponds to simple, an- . fini ith a f i inal . .
isotropic, triangular networks of springs, that lead on largdnfinite system with a force applied at a single point on its

scales to classical anisotropic elasticity with parameters ofiuface, for which complete analytical solutions can be ob-

the plain and dotted straight lines, corresponding to two orilained. More general situatiofiénite spatial extension of the

entations of the latticésee Fig. 10 Both trajectories meet at overload, finite thickness of the slab with a rough or smooth

the point (1,1) corresponding to an isotropic medium wherdottom, .. .) should be considered to obtain quantitative fits

all springs have the same stiffness. Moreover, both trajectd®’ ©xPerimenta[16,17 and numerical data. Still, two angles

fies cross the region<0 and thus allow for two-peak re- ar€ left free: the anglé, that the applied force makes with
sponse functions. Inclusion of three-body forces permitdn® vertical, and the orientation angteof the anisotropy
spring networks with i(,t) anywhere in region | or l(see with the vertical.

Sec. V.

We have also computed andt for the linear DFCN A. Vertical anisotropy
model, for a particular model for scattering where the degree
of anisotropy is tuned in terms of a paramgidsee Sec. V.
The results are shown as symbols, and appear to always lie
the elliptic region. As in the spring networks, for sufficiently
anisotropic scattering, one enters the regieflO where the
response function has two peaks.

In two classical paperi4], Greenet al. have treated the 0,,=FoC0S0,8(x), (32
stress distribution inside plates with two directions of sym-
metry with right angles to each other. The solutions are pa-
rametrized, apart from boundary conditions, &y, a, (not
to be confused withy; introduced above which are related ) )
to the setr,t by (r+ Jr—z—_t/t),(r—\/?—_t/t). The authors _To ok_)tam the results described below, we make use of the
assume their parameters ,a, to be always real and posi- 'dentity
tive, based on empirical fits of elastic constants for timbers
such as oak and spruce. This choice corresponds to region Il
in Fig. 1. Consequently, the possibility of regions | and Il
behavior, and particularly the appearance of a double-peak

response for a classically elastic material, is not discussed iQnd impose the boundary condition by identifying the coef-
[24]. Moreover, their analysis considers the response in thﬂcients ofe*9% in the Egs.(32) and(33), and(23—(25) at

case _Where the boundaries _and the directions of symmetty_ 5\ ote thatr,(z=0) is not determined by the bound-
are either parallel or perpendicular to each other, whereas tr}ﬂy conditions

present discussion—see, in particular Sec. IllB—treats a Whenz— +, we expect all stresses to decay to zero. It

more general case. The response functions for region Il, &rns out that this is a self-consistent condition as long as the

computed in the present work, could, in principle, be recon- : : . :
structed from the results of R4R4]. system is energetically stable, but cannot be imposed in the

unstable regime. The reader interested in a more detailed
derivation of the following results can consult Appendix B.

FIG. 2. Force at the top surface.

We are interested in the response of a semi-infinite system
to a localized force at its top surfage=0. We suppose that
tfis force is of amplitudé, and makes an anglg, with the
vertical direction, as shown in Fig. 2. The corresponding
stresses at=0 are then

0= Fo SiNfp8(X). (33)

500= o [ “aqre s e-iex 34
(0= 5= | aa Y

Ill. SHAPE OF THE RESPONSE FUNCTION

. . . 1. Region | (elliptic): t>r?
After having discussed the general framework of aniso- g (elliptic)

tropic elasticity and the particular example of two- Since we want all the stresses to vanish at large depth, the
dimensional systems with uniaxial symmetry, we now turn tofunctionsa, anda, in Egs. (23)—(25 must be zero foq

the actual shape of the response function in such materials:0, andaz anda, must vanish fog<0. In addition,C,,

We will calculate the response of an elastic or pseudoelastiand C,, must all vanish. Furthermore, because the stresses
slab of infinite horizontal extent to a localized force appliedare real quantitiesa;(—q)=a3 (q) anda,(—q)=aj(q).

at the top surface. We shall consider the case of a semi- The boundary conditions a=0 then imply

031302-5



OTTO et al. PHYSICAL REVIEW E 67, 031302 (2003

' ' peak structure for increasingly negative For §,=0, the
condition for having a double peak isﬁozz(x=0)>0,

1 which occurs whenv?< 82, or equivalentlyr <0. In terms

of the Young and shear moduli and the Poisson ratios, this
condition can be expressed @s>E, /v,=E,/v,. The posi-
tions of the peaks are then given by:iz\/ﬁz—az—
+z\/[r|. From the curvature at the maximum, one can define
_ a widthw of these peaks which reads

i aﬂ 1 s r2
] (40

\/—\/ a2 2 2|r

Thus, the peaks become sharper and sharper as one ap-
proaches the hyperbolic limit=r?.

A very important point is that the response profiles scale
[ ] with the reduced variablg/z when multiplied by the height
L i z. This means that, when the profile is double peaked, these
two peaks get larger in the same way that they get away from

rescaled vertical pressure response zo.
o o o o o o o o o o o o
o NN A OO 0 O N b~ OO O O N A~ O ©
T

L / [\ i
24/’ A each other. Such a response cannot therefore be seen as an
—_ — “hyperboliclike” signature, for which the peak width com-
-4 -2 0 2 4 pared to the distance between the peaks goes to zero at large

rescaled horizontal position x/z depth. However, in the limit where—r?, the width of the

FIG. 3. Region | rescaled stress profiles for several directionsP€@k vanishes, and the response becomes truly hyperbolic.

6, of the applied force and several valuesrpfvith t=2. In each . .

panel, the thick solid line is for=—1.3, the thick dashed line is 2. Region Il (elliptic): t<r?, r>0

for r=—0.7, the thin solid line is for = —0.2, and the thin dashed Again, we only keep the functions; anda, for q<O0,

line is for r=0.5.r>0 is the condition to have a single-peaked anda, anda, for q>0. This time, the fact that stresses are

profile for 6,=0. real quantities requiresa(—q)=a,(q) and aj(—q)
=as(q). A similar analysis to the above yields

477 ﬁ[(,B—Ia)COSHO sindol, (39  Fo 2(ay+a;)7°[ aya,2 0080+ X Sin 6]
NIy 2. 2 2, 2 » (4D
[(12)"+ X7 ][ (@22)"+X7]
a4=ﬁ[(,8+ia)cosao+sin 0o]. (36) «
sz:EUzzv (42)
Since the coefficienta; and a, are independent of, the
integrals in Eqs(23)—(25) are straightforwardly carried out, 2
yielding o'xx=(z) O,y (43

Fo 4az?zcosby(a?+ %)+ xsinb,]

o= (37) For a;=a,=1 (againr?—t=0), we recover the isotropic
2z 9 2 2\ 524 272 272 .

T [(a“—B)z°+X]°+[2aBz] formula. In this case, however, whé&g=0, o,, always pre-

sents a single peak, see Fig. 4. Depending on the values of
X 38 a4, and a,, the profiles can be broader or narrower than the
Oxz=7 %22 (38) isotropic response, as has been observed experimentally on,
respectively, dense and loose packihg].
2
X
O'XX:(E) Tyz- (39 3. Region Il (hyperbolic): t<r?, r<0

In this case, all the rootX, are real, and the response

The latter two results follow directly from the observation function is the sum of fous peaks, at positions= X,z. The
that the integrals in Eqs(24) and (25) can be expressed appearance of four peaks is different from previous hyper-
simply as convolutions af,{q) with the Fourier transforms bolic models[3,4] giving two peaks in which case the clo-
of x/z and x?/z%, respectively. In the limit3—0 (which  sure relation for the stresses is linear, whereas here the clo-
corresponds to’—t—0) anda— 1, we recover the familiar sure is achieved by a fourth-order partial differential
isotropic formulag21]. equation, Eq.(21). The four peaks merge into two peaks

Figure 3 shows the response for four different choices oexactly on the hyperbolic-elliptic boundaty=r?. The rea-
the parameter and a fixedt, each being shown for three son why previous hyperbolic mode[8,4] work so well
choices off,. Note thato,, has a more pronounced double- could be that granular system such as sandpiles are close to

031302-6



ANISOTROPY IN GRANULAR MEDIA: CLASSICAL . ..

08 0,=0 \ b
/
06 B
04 B
N
o2t .
[0)]
2 o : .
2
g 08 |- o,=r/8 I g
© \
S 06 / 1
]
© 04 1
E. L
5 0.2 | \ -
=4
q>.> 0 1 L
?
w 08 [ o,=mi4 1
&
® 06 b B
04 / -
02 \ 1
0 —— .
-4 -2 0 2 4

rescaled horizontal position x/z

FIG. 4. Region It stress profile for different cases. The solid
thick line is fort=1 andr =1 (isotropic casg the thick dashed line
is for t=1 andr=2.125, and the solid thin line is fdr=2 andr
=1.5.

the hyperbolic-elliptic boundar{see also Sec. IV B for fur-
ther remarks Inside region lll, the fact that all roots are real

excludes the possibility to require stresses to vanish for larg

z This leads to a situation where there are more constants
integration than boundary conditions.
One may advance on the analytical form of respons

functions using physical arguments as follows. Let us first

rewrite the equation for stressé&l), as follows:
(924 d5) (92— c2 95) oy, =0, (44)

where
c2=—r+\r>—t, (45)

leading toc..=0. The constants:-c.. are just the four real

roots X, mentioned above. Instead of solving the equation

above, we consider special solutiom$ , aj; of the follow-
ing partial differential equation:
(92—c2a2)ai; =0, (46)

which automatically satisfy Eq44). Both equations can be
solved for the boundary conditiori82) and(33), giving the
solutions

. F nao
o;zz? C0S6Hy— N S(Xx+c.z)
n00
+|cosfy+ S(X—c.2) |, (47
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. F
ax—z=70{— [c-c0Ssfy—sinfy]d(X+C.2)

+[c.cosfy+sinbdy]S(x—c.2z)}, (48
. Fo .
a;x=?{ci[cicos¢90— sin@y]8(x+c.2)
+c.[C.Cc0osfy+Sinby]S5(x—c.2)}. (49

Before constructing a general solution froﬁﬁ, let us re-
mark that there are, in principle, additional soluti5n§ sat-
isfying

(d5—ch ) o =0y . (50)
However, these solutions are not finite as they involve diver-
gences arising from integrals such #%_.dqcosQu)/q’.
Therefore, we conclude that a general solution of &d)
may be constructed as

oij=a+oﬁ+a,oﬂ. (51
It should satisfy the boundary conditiori82) and (33),
which yield a relation

a,+a_=1. (52

ghe coefficientsa, anda_=1—a, are relative weights

hich indicate how the applied load is shared between the
wo sets of force chains characterizeddy. As there is no

é)hysical mechanism introducead priori which prefers one

et of force chains to the other, we are left with one free
parameter, sag , for the response functiom;; . The am-
biguity on the value of, could be resolved by considering
e.g., a microscopic model that leads to E4f).

In Fig. 5, the propagation of the applied force along the
characteristics is shown. Note that the sign @f, may
change along a certain characteristic if égs(sinfp)/c-
<0 [see Fig. B)].

B. Anisotropy at an angle

We now, for completeness, generalize the results of the
previous sections to the case where the direction of the an-
isotropy makes an arbitrary angtewith the vertical.(The
preceding section corresponds#e 0.) This situation may
be relevant for systems that are initially sheared as in the
experiments of Gengt al.[27], or prepared in a way which
breaks the symmetry« —x. We restrict the discussion to
regions | and Il(the computation for region Ill can be carried
out in a similar fashion

The equivalent of the relatio(¥) involves now a matrix
A . which is related to\ + of Eq. (13) by

A,=Q71A0Q, (53

where 9 is the rotation matrix
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(a)

(b)

FIG. 5. Region It the stress profile as a sum of fodrfunc-
tions. The characteristios= + c.. z along which the applied load is
propagated are shown. Parameters are— 1.0, t=0.75 giving
c,.=1.5(solid lineg andc_=0.5 (dashed lines The § functions
are indicated by cartoon&) 6,=0, (b) y=7/4.

cogr Sh&s —2sinrcosr
o= sirtr cogr +2 sinTcosr
sinTcost —sinrcosr cofr—Sirfr

(54
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a(l+tarfr)
(1+ Btan7)?+ (atant)?
B:,8(1—tar127)+tanr(a2+ﬁz—1) 57
(14 Btant)?+ (atant)?
a(l+tarfr)
= : (58)
(1- Btan7)?+ (atant)?
,:ﬁ(l—tar?r)—tanr(az-l—ﬂz—l). 59

(1- Btant)?+ (atant)?
The same boundary conditiofisee Fig. 2 lead to

_Fo 27°
27 [(x+B2)%+ (A2)2][(x—B'z)%+ (A'2)?]

Oz7

X {xsinfy(A+A’)+2zcos,[AA (A+A’)+AB’?

+A’B?]+[xcosfy+zsin 6y (A'B—AB’)}.  (60)

oy, andoy, are related tar,, by the usual factors of/z and
(x/2)?, respectively.

Figures 6 and 7 show the pressure response profile as
different parameters are varied. In Fig. 6 the applied force is
kept vertical ,=0), andr is varied from O ton/4. Inter-
estingly, the initially double-peaked profil€ig. 6(@)] is pro-
gressively deformed in such a way that the left peak gets
more pronounced, until the remaining single peak moves to
the right for r=/4. This behavior might be counter-

The differential equation on the stress components that j#tuitive for smallerr, because a positive value efmeans

deduced from the compatibility condition and stress-strairf

hat the main direction of the anisotropy is oriented to the

relations is now much more complicated, but the correspond@ht. However, it can be understood within the ball-and-
ing roots of the fourth-order polynomial that appear whenSPring model of Sec. IV, where thg springs are horizontal.

looking at Fourier modes can still be calculated from Xye
solutions of Eq.(26). They read

Xc—tanrt

ST Xaans ©9

The same method as abotaee also Appendix Bcan then

be applied to find the stress response functions for a local
ized overload at the top surface of the material. Note that thlt?h

material properties are still determined by kg associated
with A+. In particular, whether the response is elliptic or
hyperbolic cannot depend on In the following, regions |
and Il are defined with respect X, as above.

1. Region |

The X are of the form*= B*i«, see Eqs(28) and(29).
The correspondiny, can be constructed with the following
guantities

Rotating to the right the two stiff directionk, emerging
from a ball downwards brings the left one closer to the ver-
tical direction, which therefore gets a larger fraction of the
overload. Continuing past= /6, however, the stiffer
springs form lines that slope downward to the right. Since
they continue to support most of the load, the single peak is
shifted to the right. This behavior holds also for the single-
Peaked profiles of Fig.(6).
~ The second series of plotEig. 7) is for the case where
e applied force is exactly in the direction of the anisotropy
(6p=7). The corresponding curves are qualitatively similar
to those of Fig. 6. The direction of the force imposed at the
top does not change the general sh@pgsotropic double or
single peakexcept for the fact that a negative pressure zone
evolves for large negative

The value of 0.6 fott used in the Figs. 6 and 7 is moti-
vated by experimental findind28]. The response function
shown in Fig. 6b) for 7= #/4 is at least qualitatively con-
sistent with the response functions measured in RéaA.
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rescaled vertical pressure response zc,,
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=] [=)
n (2]
T T
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rescaled horizontal position x/z

FIG. 6. Region | response profiles for different values of the
anisotropy angler, but with a fixed value for the orientation of the

applied force:0,=0. The graph(a) is for t=0.6 andr=-0.2,
while (b) has been obtained for=0.6 andr =0.2. Note that for the
three smallest>0 the response is stronger in the negativegion.

2. Region Il

In region I, where X;=—X,=—ia; and X,=—Xj3
= —iay, the expressions of the correspondiiginvolve the
guantities

A ay(1+tarfr)
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0.8 T T T T T T

02 r

rescaled vertical pressure response 2c,,

-4 -3 -2 -1 0 1 2 3 4
rescaled horizontal position x/z
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(b)

Q
o
T

1N
FS
r

©
N
r

rescaled vertical pressure response zo,,

o

-4 -3 -2 -1 0 1 2 3 4
rescaled horizontal position x/z

FIG. 7. Same graphs as in Fig. 6, but this time with= 7 as
indicated in the legends.

tanr(ag— 1)

2 1+ (aytanT)? ,
the pressure response having the form

_Fo 272
27 [(x+B12)%+ (A12)2][ (x+ B2) 2+ (Az2)2]

Ozz7

= 5 (62) XX SiNo(Ar+Az) +2 COSO[ ALA (AL +Ay) + A BS
1+ (aqtant)
+A,BT]+[xcosby+zsinby](A,B,+AB,)}. (65
2
1:M’ (62)  Again, the expressions ef,, andoy, are not shown, but can
1+ (estant)? be deduced as usual from that ®f,.
Figures 8 and 9 show the response profile for different
? values of the parameters. Depending on these parameters, the
_a(lttars) (63  response peak can be moved to the right or to the left with

1+ (aptant)? ' positive values ofr.
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FIG. 8. Region It response profiles for different values of the FIG. 9. Same graphs as in Fig. 8, but with= 7 as indicated in
anisotropy angler, but with a fixed value for the orientation of the the legends.
applied force:0,=0. The graph(a) is now fort=2 andr=1.5,
while (b) has been obtained fdr=0.6 andr=0.8. This time, the andd above. Here, we consider a triangular lattice of balls
response peak can be moved to the right or to the left with positivevith springs connecting all nearest-neighbor pairs. The lat-
values ofr. tice may be oriented in either of the two ways as shown in
Fig. 10, and the springs have stiffnesggsor k, as shown
Please note that the response function shown Kim).f8r  for the two cases. All springs lying along a given direction
7=m/4 also agrees qualitatively with the experimental find-have the same stiffness. We take the equilibrium lengths of
ings in Ref.[27]. A more detailed analysis of their results is all springs to be unity.
certainly worthwhile, also in order to possibly decide In either orientation, the system has reflection symmetry
whether region | or Il behavior applies for a sheared two-underx— —x andz— —z, but not under rotations; it is de-
dimensional layer where the angle of the preferred orientascribed by an anisotropic stress-strain relation involving
tion of force chains coincides with= /4.

IV. TRIANGULAR SPRING NETWORKS
AND ANISOTROPIC ELASTICITY

A. Triangular spring networks

To illustrate the previous calculations, it may be useful to
construct a ball-and-spring model with a tunable parameter
that allows us to obtain different relative valuesafb, c, FIG. 10. Network of springs of stiffneds andk,.
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We determine the elastic coefficients by writing down theAs mentioned above, the condition for a double-peaked
energy directly for a homogeneous deformation. Note thaprofile is r<0. Hence, the single-peaked shapeogf(x)
the balls form a Bravais lattice, and hence that their displacesecomes double peaked whier 1/4, i.e., when the horizon-

ments for a given average straip; are simply given by
uij rj ,

wherer is the equilibrium position of the ball. The

tal springs are substantially softer than the others.
Fork>1, on the other hand, we are in region Il wjtee

energy density can easily be obtained by summing the eneEg. (30)]
gies of the three springs linking the ball at (0,0) to its neigh-

bors along different lattice directions and dividing by the

area of the unit cellA= \/3/2.

1. Horizontal orientation of the k springs

For the case, where thg spring is horizontal, we find for
the energy density,

1
F= m[(8|(1+ kz)u)z(x+ 9k2u§z+ BKoUyUz,

+ 3Ko(Uy,+ Uy 2], (66)

which corresponds to a matriX; with the following coeffi-
cients:

_ Bkytk, ]
b= Ok 68
_ﬁv ( )
3k, o
C_ﬁ’ ( )
d= ke 70
“BA’ 79

Without loss of generality, we rescale all stiffnesses by

factor 8A/k, and letk, /k, be denoteck. The coefficients
andt of Eq. (26) are then given by

1+8k o
t=—g— (72)
_4k—1 2
r= 3 ] ( )

which givesr?—t=2%k(k—1). We may eliminatek from
these two equations to obtain a trajectory int) space:
2r+1
t= ,
3

(73

shown as the plain line in Fig. 1.
Thus, k<1 (weak horizontal springscorresponds to re-
gion | above with[see Eq(28)]

a2=%(4k—1+ V8k+1), (74)
32=%(1—4k+ VBk+1). (79

a§=%[4k—1+4\/k(k—1)], (76)
a§=%[4k—1—4\/k(k—1)]. (77)

The o,, profile is always a single peaked when the horizontal

springs are stiffer than the others.

2. Vertical orientation of the k springs

For the case where thie; spring is vertical, we get a
matrix A + where the coefficienta andb have been swapped
from the horizontal case, i.e., with the following coefficients:

9, -8
a= a, ( )
8k, +k,
~ 8A (79
~ 3ky 80
c= ﬁ’ ( )
o= 2Kz 81
“BA” 8y
Again, we rescale the stiffnesses andKetk; /k,, this time
afinding
= —9 82
= Trsk @2
_ 3(4k-1) a3
'~ 1vsk @3

which gives r2—t=144k(k—1)/(1+8k)?. As before, k
may be eliminated to obtain the trajectory int) space:

t=—2r+3, (84
now corresponding to the dotted line in Fig. 1.
Fork<1, we are in region | with
, 9k g5
¢ T1t8k’ 89
3(1-k)

2_

P =7k (86)

Again, the single-peaked shape of the, profile becomes
double peaked whek<1/4.
Fork>1, we hava?—t>0 and we are in region II, with
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8k1+ k2+ 6K
a= 8—A, (91)
b= 9k, + 6k 92
. 3k2_ 6K 93
T 93
FIG. 11. Variables associated with three-body bond-bending in-
teraction. 6(ky+6k2)
" 9
3
ai:1+8k[4k—1+4\/k(k—1)], (87)  wherexk=2k;+ k5. In terms of bulk and shear moduli and
Poisson ratios, we obtain
3 9k, ko + 6(Kky+ 2k,) k
2 172 1 2
a5= 4k—1—-4\k(k—1)]. 88 =
3. Three-body (bond-bending) interactions 3kiko+2(ky+ 2Ky) & 96
For the spring networks discussed above, the Poisson ra- X (3kot+2k)A ' (%6)
tios are not both adjustable simultaneously. For the horizon-
tal orientation ofk, springs,v,=c/a is always 1/3, while for 6(ky+6k5)
the vertical orientatiorv,=c/b is always 1/3. In order to C=—%3a (97)
have a ball-and-spring model on a Bravais lattice in which
all elastic parameters can be varied independently, it is nec- 3ko— B
essary to introduce three-body interactions. A straightforward ,,222—, (98)
way of doing this is to assume an energy cost for bond angles 8kytkyt+ 6k
that differ from 60°.
For simplicity, we present an analysis only for the case . ko—2xk (99)
where the triangular lattice is oriented so that khesprings VX_3|<2+ 2k’

are horizontal. Consider the triangle of balls and springs

shown in Fig. 11. We definéy as 2~ XY Z measured in the Note thatE,»,=E,v,, as expected. Note also that it is not
strained configuration. For the case of uniaxial symmetry, th@ecessary fok,, k,, «;, andx, to all be positive. Stability
energy of the triangle is determined by two bond-bendingcf. Eq. (17)] requires only

stiffnessesc; and k,. For case |, we define

8K, + Ko+ 610, (100

ar 2 ar 2 ar 2
Epp=(1/2)| k1 On= 73| Tke| O 3| Tka| 3] |, 3k,+2k>0, (102
(89 3Kk, + 2(Ky+ 2kp) >0, (102

with k; assigned to the angle opposite the horizontal edge.
As for Eq. (66), we take the equilibrium lengths of the ko+6k,>0. (103
springs to be unity.
Writing expressions for the angles in terms of displace- From Eq.(22), we find
ments of the balls from their equilibrium positions and sum-
ming over all triangles, including the upside-down ones . 8k + Ko+ 6k (104
(shown dashed in Fig. 1n a homogeneously strained lat- ~ 3(3kp+2k)
tice, we find a contribution to the total energy density of

(105

_1 4 3klk2+2K(kl+2k2) 4k2
= T 3) (Bkot 26) (Kot Bry) 3Kyt 2K

3
Fob=ga (261+ k2) (UG UZ) = 2(2k1+ ko) Uxlz
5 By choosingk;, k,, andx, we can obtain any positive value
+ 122U, ] (90 for t. From Eqs(100—(103), we see that the second term in
the expression for is positive. For fixed, we can make
Adding this contribution to Eq(66) gives a total energy arbitrarily large by choosing, close to—k,/6. The smallest
density corresponding to a matrix; with coefficients (or largest negatievalue of r is obtained by choosing
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3kyk,+ 2k (ky +2k,) =0 (and adjustingk;, say, to keept V. ANISOTROPIC DIRECTED-FORCE CHAIN NETWORKS

fixed). This leads tar?2—t=0 andr<0, demonstrating that A. Biased scattering

the triangular lattice can lie anywhere in region | or Il. . . s
g yw ¢ In Ref.[13], a Boltzmann equation for the chain-splitting

model was derived for a granular medium which is strongly
disordered. In the present work, we suppose that the scatter-

We have seen that classical anisotropi_c elastic materialmg of force chains by defects is biased by a preferred orien-
can have double-peaked response functions and that sughtion of the material, modeled in terms of a global director
cases can be obtained with simple ball-and-spring model$y, we intend to describe systems possessing a uniaxial sym-
These calculations explain, for.example,' the n.umer.ical '®metry, which have undergone compaction or shearing or
sults of Goldenberg and Goldhirs¢h8], without invoking  \yhich have been constructed by sequential avalanching due
any special considerations on small system sizes. to grains poured from a horizontally moving orifice.

_Itis important to note that the response functions for the  The fundamental quantity is the distribution function
triangular spring networks always lie in the elliptic regime: p(¢ n 1), where

the peaks broaden linearly with depth. Thus, the observation

of a double-peak structure it necessarily an indication of P(f,n,r)dfdndPr (106
propagative (hyperbolig response in an elastic material.

However, when thd; springs are oriented horizontally, and

in the limit where their stiffness tends to zero, the responsgives the number of force chains with intensity betwden
becomes hyperbolic. In this case, one generically expectand f+df, inside the(solid) angledn around the direction
peaks to broaden diffusively, i.e., likéDz [6,25]. Note that N, in a small volume elemert®r centered at. Integration

in the limit wherek,—0, there appears a floppygero en-  of P(f,n,r) with respect td andn will yield the density of
ergy) extended deformation mode which, as emphasized bforce chains at the point [30] The distribution function is
Tkachenko and Witte10], naturally leads to a stress-only defined with respect to an ensemble of different realizations
closure equation and hyperbolicity. In the phase diagramf force chains for an assumed uniform spatial distribution of
Fig. 1, this limit corresponds to the point where the straightpoint defects(of density pgq), with same boundary condi-
solid line touches the boundary curize r?. Note that within  tions. In the spirit of previous model3,2€] that give hyper-
this line of thought, one should also expect hyperbolic re-bolic equations for the stresses, a mechanism of propagation
sponse in elastic percolation networks at the rigidity threshis implemented, but now on the local level of force chains. In
old. In fact, in the limitk;—0 the triangular network be- the analytical model presented here, a pairwise merger of
comes a rhombic network which is known to becomeforce chain to a single one will be neglected. The limitation
isostatic for a finite system: a single boundary suffig@y a  of this approximation will be discussed below. Then the dis-
bottom surface in the slab geometiy order to suppress the tribution functionP(f,n,r) obeys the following linear equa-
zero mode, and the system becomes r[@H tion:

B. Remarks

P(fl,nl,r-l—nldl’):

dr dr
1_T)P(f1’nl’r)+2TJ df’fdfzj dn’JanP(f’,n’,r)\If(n’—ml,nle)

X §(f1c080,+ f,cos0,— 1) 8(f1sin 0, + f,sin 6,)|sin( 6, — 0,)], (107

where\ is the mean free path of force chains, and is of thethe factor 2 accounts for the number of outgoing force
order of 1/p4l°~1) in D dimensions. The lengthrepresents  chains, and the factdsin(6,— 6,)| is convenient to write ex-
the average size of a grain. The equation means the followplicitly rather than include in¥’. The dependence of the
ing: a force chain at some pointt-n,dr is either due to an scattering probability oiN requires to consider the outgoing
unscattered force chain, which occurs with the probabilityforce chains separately. In the absenceNothe outgoing
that no scattering occurs times the probability that the saméorce chains may be treated symmetrically, and one recovers
force chain existed at poimt (given by the first term on the the linear model for an isotropic mediufh3].

right-hand sidegrhs) of the equatioj or to a scattered force The analytical model presented for biased force chain
chain. The latter occurs with the probability given by the scattering does not take into account fusion of force chains,
second term on the rhs of the equation: it is the sum withwhich leads, in general, to a nonlinear Boltzmann equation.
respect to all intensities and directions of the incomilag ~ For an isotropic medium the consequences of fusion have
beled by a primgand the second outgoing force chains of been discussed for a model where force chains are restricted
the product of the probability for the incoming force chain toto lie on exactly six directiongl4]. In this discrete model the
arrive atr times the probability of scatteringd¢/\)W(n’ validity of the linear approximation was explicitly shown to
—ny,n,|N). The § functions impose conservation of forces, be restricted to shallow systenidepths smaller than a few
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times\) and small forces. However, preliminary results on a B. Stress equilibrium at large length scales

discrete model with eight directions suggest that the linear \ye now proceed to obtain the equations governing the
theory might have a wider scope of application than expecteflysically relevant fields introduced above, by calculating

from the study on the six-leg model. More precisely, a propek,,q zeroth, first, and second moment with respect, tof Eq.
analysis of the linear perturbation analysis around the f“'klog). The equations read as

nonlinear solution of the Boltzmann equation might share, in

some regimes, many properties of the linear solution pre- AV-J=(c,—1)p+coonn, (113
sented here. In any case, one can see the present analysis as
a shallow layer approximation where the fusion of chains can d;0i;=0, (1149

indeed be neglected.
Instead of solving Eq(107), we first introduce the scalar N
local average force densif(n,r), i.e., the local scalar force m(‘siiv“H didj+9;3i)
field per unit volume, defined as
:BOO-ij+5ij(Bl)\V'\]+BZUNN)+NiNj(BS)\V'J

F(n,r)= fo df fP(f.n,r). (108 +Baonn) +Bs(Nio N+ NjoriNy), (115

where oyy=N-o-N. The second equatiofil4) is readily

obtained upon averaging, while the first and third, equations

(113 and (115, are obtained using an Chapman-Enskog-

AN;-V,F(ny,r) type expansion of the local average force denBifp,r) in
terms of the fieldgp, J, and o already given in Ref{13]:

Then, multiplying Eq.(107) by f, we obtain the following
equation forF(nq,r):

=—F(n1,r)+zj dn’f dn,F(n’,r)¥(n’—n;,ny N)

D+2 .
F(n,r)=p(r)+Dn-J(r)+ n-o(r)-n+---.

2
1 (116
><cosel—(sin 64/sin6,)cosb, (109

Let us remark that Eq114) gives mechanical equilibrium as
This equation is identical in form to the Schwarzschild-€expected and is independent on the specific formPgh’
Milne equation for radiative transf¢81], though, unlike the —ny,n,|N). The validity of the Chapman-Enskog expansion
situation in radiative transfer problems, the albedo is largeis based on the assumption that on large enough length scale
than unity. Let us note that the possibility to rewrite thean isotropic state is reached. For the case of biased scattering
Boltzmann-type equatiofl.07) in terms of the force density Of force chains considered here, this implies that the bias
F(n,r) is only possible for the linear model. intensity must not be too strong. Then the statistical weight
From now on, we take all lengths in units bfwhich  of the set of force chains propagating through the entire sys-
amounts to formally setting=1. Now, we introduce physi- tem without changing their direction will not be important.
cally relevant angular averages The limiting case of strong bias requires a different approach
than the one presented here.
The constants, and B, appearing in Egs(113 and
p(r)=J dnF(n,r), (110 (115), respectively, are angular integrals involving the micro-
scopic model for the scattering process, i.e., a specification

of ¥ (n’—ny,ny/N). A specific model will be considered in
Ji(r):f dnniF(n,r), (11D sec. VD. If one neglects the dependenceNoin the equa-
tions above, one recovers the simpler equations for force
chain splitting in an isotropic granular medidm3].
aij(r)zDJ' dnnin;F(n,r), (112

C. A linear pseudoelastic theory
where[d(} is a normalized integral over the unit sphere. The As in the isotropic case, one would like to see if EHL5)

field p is the isostatic pressure, whilemay be interpreted as . : -

) L . . can be cast into a form where the stress teispis a linear
the local directed average force chain intensity per unit sur; X .

. : function of a pseudostrain tensor

face. Now, given a local snapshot of a force chain network,
one can usually not tell the direction of each chain. More- 1

over, the average force vanishes everywhere in the system as Ujj 5((7“]] +3;3;), (117

a consequence of Newton's third law. The directions of

chains are actually determined by the boundary conditionsgiving rise to the relation

say on the top and bottom of a granular layer, which thereby

determine the field) in the bulk. It is the propagation of i = Nijki Uk » (118
force chains starting from the boundaries of the system mod-

eled by Eq.(107) which leads to the orientation of the force where\;;y, is the anisotropic pseudoelastic modulus tensor.

chain network. Finally, the tenser is the stress tensor. Similarly to conventional elasticity theory as mentioned in
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Sec. Il, we will see that the tensay;,, satisfies the symme- 2B
tries given in Eq(2). The symmetric form otij; stems from As=— Bo(Bo+ Bg)
the symmetries appearing in the derivation of the large scale 0Lm0 m TS

equations when carrying out angular averages, in particulaow, one can finally determine the pseudoelastic modulus
Jdnnin;ngn; . In Eq. (119), the gradients of the field; ap-

(128

pear only in combinations such &-J and d;J;+d;J; .

Please note, however, that unlike in classical anisotropic lin-

ear elasticity theory, in the present case,

Nijikt # Nij » (119

tensor in terms of the tenséy;, ,

Mk =Dz 2

1
Aijk|+—Aijmm5k|)

A
~ 5 (BaAijmmt B3AijmnNmNn) S (129

except for certain cases imposed by the details of the scat-

tering process. The absence of the symmetry present in thg, ;s the
classical theory is possible because there is no underlying, te;nsoﬁ

free energy functional.

The relation between the stress tensor and the pseudoel
tic strain tensor can be derived using the second moment Eq.

(115). The latter can be rewritten in the following form:

Jii =Bijkiou, (120
where
1 A
Jijz)\V~J 5” m—Bl —B3NiNj +m((9i\]j+aj.]i)
(121
and

Bo Bs
Bijki :?(5ik5jl + 8j1 Oji) + B26i NN, + 7(5j|NiNk

(122

The relation betweed;; and oy, can be inverted to give

aij = 5 Aijki Ikl » (123

2

whereAj,; has the same form d;,; with the constant8,

being replaced by constams, which are obtained from the say 2, is

relation

Aijii Biimn=lijmn= 0imSjn+ 6in Ojm - (124

pseudoelastic modulus tenkgg, becomes—via

ijx and the constants ,—a function of the con-
stantsB,, which depend on the specific scattering model
In the following section, a special case will be studied
which allows us to derive a simple, but nontrivial equation
for the stresses which supplemented by the mechanical equi-
librium condition (114) opens a way to determine the stress
tensor, or, put differently, the response function.

D. A microscopic model for force chain splitting
in the presence of a bias

As mentioned in the preceeding section, the entries of the
pseudoelastic modulus tensor depend on the specific model
for anisotropic scattering which is specified in terms of the
scattering cross section conditional on the global direlstor
¥ (n’—ny,n,|N). We have considered a specific model for
force chain splitting. It tunes the strength of the bias for
scattering parallel taN, using a weight for each outgoing
chain proportional to powers of a cosine factor quantifying
the degree of collinearity with the global directdr(see Fig.
12).

For each force chain arriving at a defect in the direction
n’ two outgoing force chains are chosen in the directiops
and n, as follows: the angle of one chain, say number 1,
with respect to the incoming force chain is chosen with
weight = (n;-N)?P, for a positive integep, in the interval
[0,0max] (Or [ —60max0]), while the other outgoing chain,
chosen uniformly in the interval
[ = Omax:01] (Or [— 64, 6max], respectively. The reason for
choosing the direction of the second chain like this is that the
first (biased chain should carry most of the intensity of the
incoming force. Increasing leads to scattering which is

In particular, one obtains the following relations for the con-more and more biased in the the directdnThe form of the

stantsAM:
Ay= 2 12
=By (125
A,= 2B, 126
27 By(By+B,+B,+2Bs)’ (126
2B, 05 (B,+B,+B:)
A _ 4 (BO+ BS) 2 4 5 (127)
4 Bo(Bo+B,+B,+2Bs) '

scattering cross section is therefore chosen as
W(Nn'—ng,nyN)=Cyl¢( 5] 01)(ny-N)2P

+(04]6,) X (n-N)?PT. (130
The functionsy(6;|6;) are the respectivéuniform) prob-
abilities for 6; given 6; described above. The constdly is

a normalization factor which depends on the angle between
n’ andN and which is determined from

f dnlf dn,¥(n’—ny,ny|N)=1, (131
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VI. CONCLUSION

The main objective of this paper was to work out in de-
tails the response function to a localized overload in the case
of linear anisotropic elastic, or pseudoelastic materials in two
dimensions.

After working out the details of two specific microscopic
models, a triangular network of springs and an anisotropic
directed force network, we have shown that the resulting
large scale equations can lead to a large variety of response
profiles, summarized in the phase diagram shown in Fig. 1
spanned by a two-parameter combination of entries of the
(pseudoyelastic modulus tensor. The one-peak structure of
conventional(elliptic) isotropic elasticity can split into two
peaks for sufficiently anisotropic materials. This situation oc-
and its explicit form is given in Appendix A 4. curs as soon as the shear modubuis greater than the ratio

The simplest choice for the global directoNs=z, i.e., if  Ex/vx=E,/v, of the Young modulus and the Poisson ratio
force chains are scattered preferably downward. We mighteither in vertical or horizontal directignThis corresponds
think of a granular layer that has undergone compaction by & an anisotropic material for which vertical stresses are eas-
vertical load. In this case, the matriX; relating the stress ily transformed into horizontal straiflarge Poisson ratigs
and pseudostrain tensor has the block-diagonal form as givesnd vice versa but which strongly resists shear stresses.
in Eq. (13). Any other orientation oN can be related to the However, contrarily to the prediction of stress-only hyper-
vertical one by an appropriate rotatipsee Sec. Ill B, Eq. bolic models, these two peaks generically spread proportion-
(53)]. ally to the height of the layer, and not as the square root of

The numerical values of the paramete@ndt that deter-  the height for an hyperbolic medium. For the triangular net-
mine the shape of the response functisee Fig. 1depend work of springs, there is a special point, where the lattice
in the case of the anisotropic linear directed-force chain netloses its rigidity and a soft mode appears, where the system
work model on the constang, introduced in the preceding becomes exactly hyperbolic. It would be interesting to ex-
section. The latter are calculated from the above microscopihibit other situations where these extended soft modes dis-
scattering mode(see Appendix A and are listed in Tables cussed in Ref.10] naturally appear; a possible candidate is a
-1V of Appendix A for different choices of the maximum percolating network of springs at rigidity percolation.
angle 6,5, of the scattering cone and different bias intensi- For the anisotropic rules of force chain scattering that we
tiesp. have chosen, on the other hand, the directed-force network

Interestingly, the roots we find for this scattering modelwas always found to be in the elliptic regime. This might,
all lie in the (elliptic) regions | and Il introduced in Fig. 1. however, be an artifact of the linear approximation that we
Hence, it is possible to find an anisotropic scattering rule thahave used and where mergers of force chains are ignored.
leads to a two-peak structure of the response function, but iRreliminary results suggest that for the full nonlinear prob-
no cases the values ofandt have been found to lie in the lem, a genuine elliptic to hyperbolic phase transition might
hyperbolic region. Whether this is a limitation of the linear take place when the degree of anisotropy is increased, but
treatment of the DFCN, as suggested by the analysis of theore work(underway is needed to confirm this potentially
six-fold model[14], is at present not settled. Work in this interesting result.
direction is underway32]. Recent experimen{®7] have not been able so far to dis-

We finish this section with the following remark. If one tinguish between a noisy hyperbolic respor(géhere the
identifies the elastic constants of classical anisotropic elastiovidth of peaks scales as the square root of the hpight
ity theory and their geometrical generalizations obtained fomnisotropic(pseudgelastic response functions. For sheared
the linear anisotropic DFCN, as we have always done imsystem where force chains are preferably oriented at 45°
plicitly here, the possible range of values which occur forwith respect to the vertical, response functions show a hori-
typical granular materials can be discussed. Experiments ireontal shift(in the lateral direction with respect to the point
dicate that in samples of sand which are filled from aboveof applied force of the maximum, consistent with the pre-
and where the major principal axis of a stress tensor is in théerred orientation of force chains. We found qualitative
vertical direction,t=E,/E, attains values in the range 0.4 agreement with our findings. More detailed experiments ap-
<t<1 (see Ref[33]). For the maximum scattering angles pear to be necessary to decide on the parameterse., the
plotted in Fig. 1, the values dfdetermined from the specific possible locations in the phase diagram, Fig. 1, or put differ-
microscopic model for biased force chain scattering useently on the elastic constants, corresponding to a particular
here appear to satisfy the experimental range. Further infoform of the response function, if the presépseudogelastic
mation on the construction history of the sand samplesanalysis applies.
which affects, e.g., the distribution of packing defects or the It would be interesting to extend the present results to
strength of the scattering bias, is needed to fully judge théhree-dimensional situations in order to fit the results of ex-
quality of the anisotropic DFCN model presented here. periments on deep sand layers, where a single-peak response

FIG. 12. The microscopic scattering model. The length of the
arrows are different to illustrate the amount of force transmitted
along the directions.
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function was measurefll6], and, most importantly, to test The coefficientk] is irrelevant becaus@;o;;=0, where
the consistency of the effective elastic moduli obtained from-~ — ;,— &;p. Then the coefficierk; is given by

this fit in other geometriedlike the sandpile or the sijolt 7ij
would also be very interesting to find a way to prepare a

disordered granular medium in a sufficiently anisotropic statekszzf dn’f dnlf dny[2(n’-N)2=1]¥(n’ —n;,n,|N)
such as to observe a two-peak response functions.

1
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Next, let us derive the equation of mechanical equilibrium
(114). Taking the first moment of the force density equation
without an external force gives

APPENDIX A: SOME INTEGRALS FOR BIASED
LINEAR DFCN

1. Zeroth moment

A
First, we propose to calculate the coefficieofsandcy. 5905 = —Ji+2f dn’f dnlf dnyngiF(n’,r)
Using the expansiofil16) the integral with respect to; of
the equation for the force density, one finds 1
X ! . . .
¥(n _ml’nz'N)cosal—(smellsmaz)cosaz
)\V-Jz—p+2f dn’f dnlf dny/ p+Dn/J; (A6)
D+2 . ; ;
4 > niro_ijnjr P (' —ny,n,|N) The second term contains the integral
% _ 1 _ J dnlf dnyng; W(n'—ng,ny N)
cosf,—(sinf,/sindh,)coso,
1
D+2. X . . =an/ .
=(k;—1)p+ ksTUNN- (A1) c0s6,—(siné/sinh,)cosb, ani. (A7)

Please note that a contribution occurs only from terms whiciBymmetrizing the integrand with respect to the indices 1 and
are even with respect to’——n’. The first coefficient is 2 givesa=1/2. This result is independent of the specific

given by form for the scattering cross sectidih(n’—n4,n,|N). The
remaining integral with respect W' yields J; canceling the
k1=2f dn’f dnlf dn W (n' —ng n,|N) first term — J; above.
1 3. Second moment

x cosf,—(sinf/sin6h,)cosb, (A2) Finally, we calculate the coefficien, in the third of the
continuum equations, Eq115). Let us consider the second
The second coefficierks; appears when performing a de- moment by multiplying the force density equationyn; ;
composition of the tensor and integrating with respect to. One obtains the following
equation:

2] dn’f dnlf dnon/n/W(n'—ng,n,[N)

1
X - -
cosf,—(sinf,/sindh,)coso,

1
)\Dfijk|&kJ|= - 60'” +f dn’F(n’,r)'ij(n,,N),

(A3)  where
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[o=1;;=KoD +K;+2K,(n"-N), Al12
Iij(n’,N)=2j dnlf dnongng; W(n'—ng,ny|N) oo 1 2K ) (A12)
1 I1:Niliij:K0+K1(n’-N)2+2K2(n’-N), (A13)

% cosf,—(sinf/sin #,)cosb, (A9)
|2:ni,|ijnj’:K0+Kl+2K2(n,'N). (Al4)

and . . . .
The variablesly, 14, andl, are likewise functions of the

argumentn’ - N which is suppressed henceforth. In the fol-
lowing we considerD=2. The system of equations may

Liji = )(5ij5lir Sikdj1 + 8l i) - (A10) then be written in matrix form

D(D+2

lo,l1,012)T=A(Kq,K1,K5)T, Al5
The tensoil;; may be decomposed as follows: (lol1.12) (Ko.K1,Ko) (A15)

., , ) with
|ij(n/,N):K05ij +K1ni nj +K2(ni Nj+nj NI)

(A11) 2 1 2cosw

The coefficientsKy, K;, and K, are all functions of the A=|1 cofa 2cosa |, (A16)
argumentn’-N which will be suppressed in the following.

As the tensoi;;(n’,N) should be invariant with respect to

the operationN— — N because the scattering cross section

W¥(n’—ng,ny|N) is, the functionsKy andK; are even and where cosr=(n"-N). We eventually want the functiorts,,
K, is odd under this “parity” change. They are to be deter-as a function of the integrals,, ©=0,1,2. So we need the
mined by multiplyingl;; as follows: inverse matrix

1 1 2cosw

1 0 -1
Al= 0 1sirfa 1sirfa , (A17)
—1/(2 cosa) 1/(2 cosa sifa) —coq2a)/(2 cosa sirfa)

We find io (ny;-n")?
iy (a)=2f dnlf dn, (ng-nj)?
Ko=lo—15, A18 :
o0 (A18) I2 (ng-ni)(ng-n’)
1 XW(n'—ng,nyN)
K= (I,=14), (A19)
Dsita % 1 . (A22)
cosf,—(sinf,/sindh,)coso,
1 Then, we find for the functionk,,
K2:2 _|0+ _ [Il—COQZa)lz] . (AZO)
cosa sirta Ko=i1, (A23)
Before writing down the integrals, , let us introduce the Ki=—ii+io—2sgrisina)cotais, (A24)
vector i
_ . 2
Kz—sgr(sma)—sina. (A25)
N—(n-N)n AD1
m:m' (A21) The transformation fronhy,l 1,15 toig,iq,i5 is primarily for
technical reasons as in the scattering function the directions
n, andn, are parametrized with respectri6. We may now
Furthermore, let us denote the integrals proceed to perform the integral on the rhs of E48)
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D+2.
J dn’F(n’,r)Iij(n’,N)=fdn’ p+DJkn{<+Tak,n;n|’ lij(n",N)
=p(5ijf dn’K0+f dn’Klni’nj’+J dn'Kz(ni’Nj+nj’Ni))

+DJk( a}jf dn’Kon,QJrf dn’Kyn{njny

D+2

+fdn’K2(ni’Nj+nj’Ni)n&)+ 5 c}k|(5ijfdn’K0n|;n|’+fdn’Klni'nj’n{(n{

+f dn’Kz(ni’NjJrnj’Ni)n,Qn{). (A26)

The integrals which are multiplied hy, give no contribution ) L
because due to their tensorial properties they should all be MijkI:f dn’Kyninjngn
linear in N which means that they are uneven under sign

changeN. On the other hand, the integrands are even with :Rl(aijﬁk,Jr OOy + 5“5jk)+R2(NiNj5k,
respect to this operation, which implies that the integrals are _
zero. + permutation+ K3N;N;NN;, (A35)

We now further simplify the integrals with respect né

multiplied by p and (}m using decomposition according to
Cartesian tensors. The integrals followipgare denoted as and
follows:

j dn’Ky=Ko, (A27) J dn’Ka(n{Nj+n{Nj)ngn/

:Ké(ZNiNj(Skﬁ' NiNk‘st + Nij(S“ +NiNI5jk

f dn’Kaninj =Kyadi +KepNiNg, - (A28) NN ) + 2K NN NN (A36)

f dnKa(n/Nj+niNi) =K+ KopNiNj . (A29) | et us turn to the first of these three integrals. The coeffi-
cients are given by the following integrals:

The constants are given by

Kia= f daKsira, (A30) Koa= f daKgsia, (A37)

K= | daK 2a), A31 _

1b J aKyco82a) (A31) Kop= f daKocod 2a). (A38)
Ka=0, (A32)

The second integrdiA35) giving rise to the coefficientk; is

Ez,bZZJ daK ,cosa. (A33) treated by performing the following contractions:

The angular integrations abovand all the ones following _ B ,
below) are understood to be normalized by factors )2 M1=Mijj;= | dn’Ky, (A39)
The integrals foIIowing&w are the following:

f dn’KOnilnj,:Eo'ab‘ij‘f'iobeiNj y (A34) M2:Miik|NkN|:J daK1COS2a, (A40)
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M3=Mijk|NiNijN,=J daK coda.  (A4l)
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ag= f daligsirfa+icoda—i,sgrsina)sin(2a)],
(A55)

In matrix notation, the system of equations we have to invert

is the following:

(M11M21M3)T:B(R11R21R3)Tl (A42)
with
D(D+2) 2D+4 1
B=| D+2 D+5 1 (A43)
3 6 1

Then, forD=2 one finally obtains for the coefficients

:f dale

- 1 5 4
K2=JdaKl —§+§co§a—§coé‘a . (A45)

co§a + ; coéa) (A44)

R3=f daK;(1-8 coga+8 coda). (A46)

Finally, the coefficients of the third integréh36) read as

=f daK, cosa sirfa, (A47)

@zf daK, cosa(1—4 sirfa). (A48)

Next, one collects all coefficients in front of the Cartesian

tensors on the rhs of the second momgk®):

)\DFijk|VkJ|=— o-ij+8‘ij(D+2)Rl+5ij(a0p+a1(}NN)

1
D

+N;iN;(azp+ a3a'NN)+a4(Nj(}ika

+Ni‘}jka)v (A49)
where the coefficienta, are given as follows:
aozio‘i‘ilya, (ASO)
D+2 —
a;= (KOb—i—K ), (A51)
a,=Kyp+Kyp, (A52)
2 _

az= (Kg+2K3), (A53)
a,=(D+2)(K,+KJ). (A54)

When reducing the integrals in terms of the integiglsone
obtains

D+2 ~
> (fdaizsgr(sina)cos(Za)vLKz ,

a|=
(A56)

a,= f daf(ig—iy)cog2a)+2i,sgn(sina)sin2a)],

(A57)
D[1-2sirf(2a)]
+4i,sgnsina)sin(2a)cog2a)}, (A58)
1
a,=(D+2) K2+ fdalzsgr(sma)sm(Za)}
(A59)
and
Rlzf da[(ip—i;)sina—2i,sgr(sina)cosa]
sina
XT(_1+4 coga), (A60)
where

K,= f da[(ip—i;)sina—2i,sgrsina)cosa]

Sina
XT(_1+4 coga). (A61)

Using the equation for the zeroth mometl3), we can
eliminatep and we obtain the coefficienB®, throughBs,

1 ~
1 ~
Bl (C 1)[a0_a1_(D+2)K1]! (A63)
Co
Bzzal‘I‘ c [ a0+a1+(D+2) 1] (A64)
1
Bszcl_l(az_as_zady (AB5)
B,= a3+ ( a,+azt+2a,), (A66)
B5:a4. (A67)

Inserting forc,, c, calculated in Sec. B1, and fdt,, K,
and a, througha, given above, the coefficien8, are en-
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TABLE I. The microscopic constants, ¢;, andB,, x=0,...,5, and theentriesa,b,c,c’,d of the

matrix A+ calculated from the microscopic model for scattering for different bias intengifieghere the

maximum scattering angle &,,,= 7/2—0.01.

p 0 1 2 4 6 8

c,—1 3.23966 5.98386 6.91022 7.66596 8.00018 8.19206
c, <10°° —2.73543 —3.6542 —-4.39914  —4.72539 —4.91083

B, —2.02254  —3.07827  —3.49472  —3.87001  —4.04823 —4.15404

B, 1.12431 1.05801 1.03896 1.02225 1.01434 1.00966
B, <10°° 0.478234 0.688084 0.897999 1.00432 1.06907
B, <10°° —~0.0871608 —0.0664648 —0.0348425 —0.0166413 —0.00515556
B, <10°° ~0.248513 —0.968517 —1.88383  —2.39835 —2.72395

= <10°° 1.05321 1.64421 2.26475 2.58598 2.7831

a 0.185067 0.250961 0.374958 0.594681 0.751558 0.862493
b 0.185067 0.297586 0.45714 0.727492 0.916382 1.04853
c 0.432281 0.308721 0.315767 0.368355 0.416152 0.452717
¢’ 0.432281 0.971317 1.48443 2.25966 2.76618 3.10848
d —0.247214 —0.246906 —0.270197 —0.311477 —0.341938  —0.364713

r 1.0 0.914026 0.438156 —0.042155 —0.260547  —0.383077

t 1.0 0.843324 0.820227 0.81744 0.820136 0.822574

tirely determined in terms of integrals over the scatteringChoosing the angle betweeri and N as « one finds the
function or in terms of integrals over the functionswhich  following relation to determin€,:

have to be evaluated numerically. Explicit expressions for
the functionsi , for a specific scattering model are given in 1=f dn1J dn,¥(n’—ny,n, N)
Sec. B4 and have been used to yield the following Tables

I—IV. d6,

e 2f0maXd61 J‘fol
P 0 Omax —0max( Omax— 01)

4. The scattering model
X[coSP(6,— a)+coSP(;+ a)].

A68
We give now the explicit form for the normalization fac- (A68)

tor C, of the microscopic scattering model, E¢L30.  One finds

TABLE II. The microscopic constantsy, ¢;, andB,, ©=0,...,5, and thentriesa,b,c,c’,d of the
matrix A+ calculated from the microscopic model for scattering for different bias intengifieghere the
maximum scattering angle &,,,= 7/2—0.05.

p 0 1 2 4 6 8

c,—1 1.90263 3.3809 3.90443 4.36006 457993 4.7162
c, <10°° —1.4544 —~1.95725 ~ —2.38459  —2.58451 —2.70519

By —1.34045  —1.97435  —222524  —2.45813  —2.57493 —2.64818

B, 1.20453 1.12804 1.10869 1.09218 1.08417 1.0792
B, <10°° 0.302278 0.418453 0.53197 0.590517 0.627352
B, <10°° ~0.0881382 —0.0775209 —0.0563067 —0.0438889 —0.0353852
B, <10°° —0.158535 —0.486841  —0.90403  —1.14793 ~1.30717

= <10°° 0.626319 0.940457 1.26503 1.43651 1.54521
a 0.339085 0.40072 0.51712 0.705856 0.828683 0.915888
b 0.339085 0.501589 0.681264 0.952482 1.1194 1.23675
c 0.712094 0.521519 0.513996 0.548739 0.580671 0.606106
¢’ 0.712094 1.36669 1.89275 2.61839 3.04756 3.3414
d —0.373009 —0.370911  —0.38917  —0.419075 —0.439207  —0.453324

r 1.0 0.868488 0.57427 0.252696 0.0920036 —0.00397738

t 1.0 0.7989 0.75906 0.74107 0.740293 0.740561
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.,5, and theentriesa,b,c,c’,d of the

matrix A+ calculated from the microscopic model for scattering for different bias intengifieghere the

maximum scattering angle &,,,,= 7/4.

p 0 1 2 4 6 8
c,—1 0.154395 0.224047 0.271432 0.32539 0.355728 0.37555
C, <107° —0.0528349 —0.0821605 —0.113501 —0.130596 —0.14166
Bg —0.199655 —0.267729 —0.311707 0.360256 —0.386527 —0.403233
B, 1.79315 1.70859 1.69527 1.68785 1.68312 1.67972
B, <10°° 0.0282278 0.0350513 0.0396921 0.0413126 0.0421027
B, <10°° —0.0272506  —0.0938402 —0.16046 —0.192802 —0.211874
B4 <10°° —0.0482741 —0.0321304 0.000361819 0.0226003 0.038231
Bs <10°° 0.0590451 0.0753626 0.0858452 0.0893064 0.0908931
a 5.22475 4.46981 3.99399 3.55095 3.33471 3.20677
b 5.22475 5.48863 5.38669 5.23452 5.14104 5.08701
C 7.72907 6.02669 5.24234 456791 4.25716 4.07678
c’ 7.72907 8.43526 8.55002 8.60126 8.61323 8.63027
d —2.50432 —2.39596 —2.11555 —1.82208 —1.68225 —1.60082
r 1.0 0.682741 0.765062 0.912647 1.00577 1.06836
t 1.0 0.814376 0.741456 0.678371 0.648644 0.630384
1 2p 2 - The choice of signs indicated on the rhs is to be understood
Cpla )— 5 ( ) — 2 ( ) as follows. The+ sign is used foig, i1, and the— sign for
2PV P 0P k= i,. Using these expression all constamts, c,, and B,
Xsir[(Zp—Zk) ﬁmax]cos{(Zp—Zk)a]] throughBs can be determined.
[2(p=K)] 5. Numerical values of the different coefficients
(AB9) Microscopic constantscy, ¢;, B,, and the entries

We have mentioned above that all constants of the con@:P.C,c’,d of the matrixA ; calculated from the microscopic
tinuum equations depend on the paramekarsks, and the model for various scattering angles are given in Tables I-IV.

integrals of the functions ,(«) for ©=0,1,2. Using the
model for the scattering cross section introduced in the main

text, they read as follows:

ky 7 da 1

(k3)=zf ~(2m) Cola )<cos(2a))
emaxdel 701 d(92

Xfo mf—Bmax(amax_ 61)

[coSP(0,— a)+cosP(0;+ a)] )
(cos#,sin 6,— sin 6;,c0s6,) (sin =

and

io
dé,

APPENDIX B: RESPONSE FUNCTIONS
1. Region |

The oj; can be expressed as

siné,)

(A70)

6,
i1 (a)=2Cp(a)f
P

[coSP(;— a) +cosP(6,+ a)]
(cos#,sin 8, — sin 6;c0s0,)

sin #,c0s 6, — sin §,cos 6,
X | sin@4sinf,(sinf;—sinb,)

sin 6,sin 6,(cos#,— cosb,)

maxdalf 01
0 Omax —0max(0max_ 61)

. (ATD)
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o0
0= fo dg[a% e '+ a,e'9¥]e'*4a?

+f dolal e 9%+ age'd*]eXs9?, (B1)
0

+ oo . - -
Xx— J;) dq[(X%as)*efqu+xé21a4€|qx]e|x4qz
+ oo - - -
+f dQ[(Xia4)*ef'qX+X§a3e'qX]e'X3qz,
0
(B2)
+ . . -
“XZ:_L dq[ (Xzaz)* e 19+ X 4a,e'9¥] e X492

+ . . -
_j dq[(Xzas)*e 'Y+ Xgasequ]e'XSQZ.
0

(B3)
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,5, and thentriesa,b,c,c’,d of the

matrix A+ calculated from the microscopic model for scattering for different bias intengifieghere the

maximum scattering angle &,,,,= 7/8.

p 0 1 2 4 6 8

c,—1 0.0335067 0.0428648 0.0524673 0.0641093 0.0705982 0.0747538

Cy <10°° —0.00668779 —0.0121806 —0.018075 —0.020776 —0.0221954

Bg —0.0485058 —0.0601859 —0.0709311 —0.0839805 —0.0912928 —0.0959171

B, 1.94764 1.89848 1.86723 1.86271 1.86831 1.87199

B, <10°° 0.00497716 0.00718661 0.00839984 0.00836975 0.00806044

B, <10°° 0.0189319 —0.0293591 —0.104785 —0.149741 —0.177526

B4 <107° —0.0118706 —0.0131302 —0.00748694 —0.000990488 0.00438443

Bs <10°° 0.010374 0.0158534 0.0190278 0.0189925 0.018225

a 24.6907 22.0583 19.3127 16.6004 15.1812 14.279

b 24.6907 25.1971 24.085 22.3923 21.0886 20.0854

C 34.9988 29.4735 25.2402 21.4431 19.66 18.5982

c’ 34.9988 35.9891 35.1548 33.5005 31.975 30.7187

d —10.308 —10.0378 —9.07808 —7.69791 —6.91559 —6.43566

r 1.0 0.697308 0.677047 0.784092 0.890948 0.973368

t 1.0 0.87543 0.801857 0.741342 0.719877 0.710911
The top conditiong32) and(33) allow to calculate the coef- |:0 4 ) J.—J_
ficientsa; anda,. They read Y (a?+ B?)cosb, >

_ 1 41 =1

8= %, 2 =2 (X4C086o+Sin ), (B4) +Bsinbo———asinfy— (B10)
1 .
a= Xa—X, 27 (X300590+ sin ). (B5) 2. Region Il

To perform the integrals ovay, it is useful to define the two
following integrals:

The oj; can be expressed as

0,7~ fo dolal e 9%+ a,e'9¥]e X492

+oo L az¥xiBz
IiEj dgcogqx)e 9= ——————, oo _ -
0 (azFiBz)*+x ©6 +f dqla}e 9+ azeiX]e*siz  (B11)
0
— A B —aqzxipqz_ X o 2 * A~ QX 2 igx7aiX4qz
J.= . dgsin(gx)e —m. Tyx= . dg[(Xzas)*e +Xja,4e'9]e' "4
(87) .
We then get +f dq[(xéas)*e—iQX+X§a3eiQX]eiX3QZ’
0
Fo 4 ) 41 0| = (B12)
Ty 25 Bcosb, > + acosé, 5
+S|n0 J _J (BS) _J'O dq[(X4a4)*efqu+X4a4e'qX]e'x4qz
o 2 |
Fo I+ —J’ daf (Xzaz)* e 19+ Xzae'9%]e' X342,
(TXX 277_ ZB B(a +ﬁ )Cosao _a(a2+ﬁ2) 0
(B13)
=1 N
X €osth—; — (o~ B?)sin b > The top conditiong32) and(33) give again
IR 1 F
+2aBsinf, 5 , (B9) az= X X, 27 (X4c0300+sm00) (B14)
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1 Fo Fo
=—0—-=—(X +sinfy). Bl =— | +sin
ay Xs—X, 5 (X3C0sbp+s 6o) (B19 T2~ 5 az_al[azcoseo (@) +sinfpd(ay)
: _ — a1€0S6gl (ap) —sinbpd(ay) ], B18
In this case, the useful integrals are ! ol (@2) od(a2)] (B18)
e az o :i 2 [—aza cosbpl (a ) — a?sin 0pd( ay)
I(a)Ef dgcoggxe “=——H—, (B16) 2w ap—ays RO O
0 (az)*+X
+ ada,c080,| (ay) + adsin Opd(az)], (B19)
—+ oo
J(Q’)EJ dQSiWQX)eian:?. (B17) Fo 2 .
0 (@z)“+x o= H[alazcoseo.](al)—alsm ol (xp)
We then get — apa1C080p)(ay) + a,sin gl (ay)]. (B20)
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